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PHASESPACECONCEPTS 
Leo Michelotti 

Fermi National Accelerator Laboratory 

If we woni to know where Jupiter will k ID 08 lo plan 
properly ihe Jupiter rhot, then we may proceed in one mathe- 
matical direction. If we ore intererted in whether the rahr rys- 
tern is dynamically stable or unstable, we will have to proceed in 
cmother. In view of ihe inherent dificullier of the malhemotics, 
the art of modelling ir that of adopting the proper rtmtegy. 

- Philip J.Dwis and Reuben Hush 
The Mathematical Experience 

1 RESONANCES ON INVARIANT TOFU. 

Much has been written about a revolution taking place in the asymptotic analysis of dy- 
namical systems, usually in association with beautiful, color photographs of objects like 
chaotic attractors, fractal basin boundaries, and other such Julia-F&x sets. The first shots 
of this revolution were fired, however, not in the 1950’s 01 1970’s but towards the close 
of the nineteenth century. By 1892, Henri PoincarC already had published his landmark 
work Ler MeYhods Nouvelles de lo Jfe’canipue CPlesle in which he advanced the theses that 
differential equations should be viewed as geometric objects, in particular, as vector fields 
on manifolds, and that questions concerning the long term stability of B dynamical system 
might be attacked by studying the topological properties of these objects. His work even 
led him to recognize the extraordinarily complicated behavior of orbits in the vicinity of B 
separatrix, what today we would call “chaos.” Much like his predecessor Newton, P&c& 
found that the ideas and language which he needed did not yet exist and that he had to cre- 
ate entirely new mathematics in order to progress. In time the seeds which he planted grew 
into branches of modern topology, with all its trappings of tangent and cotangent bundles, 
differential forms, exterior algebra and calculus, homology and cohomology - all of which 
are frequently associated with general relativity, string theories, or gauge theories, but are 
almorl newr mentioned in connection with one of their sources, good old classical mechon- 
icr. (This is a fate shared by the ideas of Sophus Lie, which generally are not introduced 
until the study of quantum angular momentum or W(3).) 

In these lectures we shall look into this geometric approach to the study of Hamilto- 
nian dynamical systems, especially in connection with the kinds of problems which arise 
in accelerator orbit theory. This is a vast subject, and we certainly shall not be able to 
treat it as fully or as carefully as it deserves. In recent years a number of books have been 
published on dynamics, and the reader who wants to learn mow will find some of these 
titles included in the bibliography. Our own relatively modest goals will be to delineate 
the idea of invariant tori in phase space, to define and illustrate the importance of resonant 
orbits and their separatrices as structures for organizing dynamics, and to touch upon the 
meaning of chaotic orbits in nonintegrable systems. I hope, further, to lessen the impression 
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which some may have acquired during their formal education that classical mechanics is a 
dull, closed subject with no mysteries left to explore. 

1.1 Manifolds, mappings, and vector fields. 

A series of lectures with the title Phore Space Concepts should begin with a good, rigorous, 
explicit definition of “phase space.” Regrettably, doing this would require a full course in 
differential topology, so we shall settle for a bad, heuristic, implicit definition and shift our 
focus to the objects which live on phase spaces: dynamical systems. 

A dynamical system is abstractly associated with two different but related mathematical 
objects: (1) a vector field and (2) a group of mappings. Both WC defined on a manifold, 
M, which is the “phase space” of the system. Let us deal with these three objects one at 8 
time. 

manifold: Everyone has an intuitive understanding of “msnifoldr” as npaccr which look 
Euclidean on small scales, II fomml generaliration of surfaces, such as spheres, cylinders, or 
tori. A localiied region of a manifold is thus representable as an open subset of R”, called a 
“chart.” A collection of charts which covers the entire manifold, with some overlap between 
charts so we know how to patch them together smoothly, is called, appropriately enough, 
an “atlas.” Having said this, we must also include manifolds having exotic properties, such 
as nonorientability - the Mobius strip or the Klein bottle - or multiple connectivity - 
the torus. Although all are admissible in principle, no physically relevant system has been 
constructed on Mobius strips or Klein bottles; tori, however, are another matter. If two 
charts overlap, there must exist a “smooth” transformation connecting the coordinates as- 
sociated with points that belong to both charts. If r E R” and g’ E R” are the two 
n-tuple representatives of a point p E M , then the transiormation is it one-tc-one, highly 
differentiable function, T : c- L’ The key idea which there elaborate constructions is 
meant to convey is this: M is an object which can be represented, or coordinatized, in a 
large number of rays but which we want to think of es an entity independent of all these 
representations. 

vector field: A good heuristic image of a “vector field defined over a manifold” is conveyed 
by picturing a surface with a tangent vector attached to each point. The principal tool re- 
quired to make that image precise is the atlas of charts used to define the manifold. Since a 
manifold is specified by an atlas of charts, we can define a vector field over it by giving its 
representation, that is, its components, on each chart and making sure that everything is 
consistent and gets patched together smoothly as you jump from one chart to another. To 
insure that this is a geometric object requires a set of instructions for transforming compo- 
nents of vector fields when you change the coordinates representing points on the manifold. 
We shall go into this in a little more detail later. The set of all possible tangent vectors 
which can be attached to a point p E M is itself a vector space which is lypically labelled 
TMp, the “tangent space” at p; the union ofall these vector spaces is the “tangent bundle” 
associated with the manifold, TM z IJ,,, TMp. 1 (A particular vector field is called a 
Ycross-section” of this bundle by mathematicians.) 

gronp of mappings: A mapping, +, is a function which takes the manifold into it- 
selfi 4 : M + M. Of course, we tacitly assume that the mappings under consideration 
are “nicely” behaved: in particular, we avoid mappings which have discontinuities or are 
otherwise not sufficiently “smooth.” We want to interpret a special set of mappings in terms 
of the time-evolution of a dynamical system. This set is indexed by R’, and WC interpret 

‘Tbis is ovusimplilyin~ l little: the tangent blrndle also contti* the underlying base manifold as a 
projection. My parpose here is to motivmae vitbout dowing Ior details which would bc nccnrary in a 
‘cbchrly pnent.tion. 
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the particular map, &, : M - M, u a time-evolution operator which taker a system 
from its state at time ~1 to its state at time i2. In order for this to be the case, we must 
insist that the set obey a grouplike property known as the Chapman-Kolmogorov equation: 

ht, 0 $t,c, = h, . 

From this we see easily that, for all 1, btc = id. Notice that reversibility is also implicit 
(unless we restrict ourselves to II > t, ) since we have that I$,:, = &,*,. This is not 
quite a group: concatenation requires at least one “time” in common, t2 in the above ex- 
pression. However, if the system is periodic, so that for some r and all tl, II we have 
@L,+~ t,+, = blat, , then we can construct a discrete group of mappings by taking as gener- 
ator a period advance map, * E ++r+7 (, for some 1. The Chapman-Kolmogorov equation 
implies that the subset (@” 1 R E Z} forms a group. The different groups that we get by 
varying the base time, t, are all isomorphic to each other. If the system is autonomous or 
time-independent, so that &,+7 1,+7 = &, for all valuer of the index parameters, then 
we can build 8 continuous group of mappings by defining, & E &,+7 1. The Chapman- 
Kolmogorov equation then implies the group properties, 

&=id , & o&t = &+,o , and qb;’ = $-, (1) 

Comment 1: We have assumed that the index, T, is a real variable, but it is possible to 
derive some deep theorems by enlarging its domain to the complex plane. In fact, Eq.(l) 
requires only that z be a member of an (additive) Abelian group: this could be the integers, 
a module, the reals, ration& padics, or whatever. Eq.(l) then essentially describes a 
morphism between the index group and the group of mappings. 

These objects are the mathematical building blocks used to develop a geometrical theory 
of dynamical systems. We shall not employ their full power here, but they would be neces- 
sary to prove rigorously the heuristically plausible assertions which will be made throughout 
this paper. At any rate, it is good to know that they exist and could be called upon if nec- 
e***ry. 

1.2 Dynamics. 

Dynamics is introduced when we interpret these geometric structures as containing infor- 
mation about the behavior of a physical system. A dynamical system is actually associated 
with more than one manifold: First, there is the configuration manifold which labels 
the instantaneous “position” of the system without information as to how it is changing. 
For example, the configuration manifold oia harmonic oscillator is (topologically equivalent 
to) R, the set of reals, while that of a pendulum would be (topologically equivalent to) 
(L circle, S’. The tangent bundle of the configuration manifold contains both positional 
and velocity information about the system. It is itself a manifold: for the harmonic oscil- 
lator, a plane, R x R = R * ; for the pendulum, 8 cylinder, S’ x R. Ii instead of using 
the vector spaces TMp one uses their duals, labelled TMb, then one is working with the 
cotangent bundle of the configuration manifold, which is again itself a manifold (gen- 
erally equivalent to the tangent bundle). Typically, the tangent bundle is associated with 
(porUion, ~&city) information and Lagrangians, while the cotangent bundle is associated 
with (position, momentum) and Hamiltonianr. At the level at u,hich we shall work in this 
paper, such nice distinctions do not matter, and se shall ignore them. The important idea 
that we shall try to motivate is this: differential equations of motion are the components 
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of a representation of a geometric object, L rector field on either the tangent bundle or 
the cotangent bundle of a configuration manifold. (Put another way, a cross-section of the 
tangent bundle of either 8 tangent bundle or a cotangent bundle; it gets 8 little involved.) 

Ewing touched qon thue points, it is time to reflect on m important example. 

1.2.1 Harmonic oscillators. 

The uchetypal dynamical ayrtem in the harmonic oscillator, the phase *pace of which ia 
R’, with interpretation, 

1ER', IS 
a! 

( > P . 
With momentum defined u p = ti , and including a damping tern, Newton’s law t&s 
the fanilk form, 

$ = -rp - mw’., 

which we write u a rector field over phase apace. 

i=( t,)=( -A, ~;:)I=& 
In order to analyrc the flow of orbits implied by E+(Z) it is easiest to do an eigenanalysin 

of A. 

det[A-Xl] = X’+TX+w’ = 0 

Eigenvectors: (l) cs ( tm) 

Consider the nature of the 0ow for various regions in the (u,r) control space. For 
l- > 12~1 , we have X+ f: 0- and X- k -r . There is one and only one sero-dimensional 
invariant nubset of phase spacc: the origin itself ia the only Axed point. The two eiges- 
vectors of A lie along invariant, oncdimensionsl snbmanifolds. Orbits on one of these, 
cor?esponding to x-, move rapidly (since I’ is large) toward the origin, while tholle on the 
other approach the origin more slowly. Any other orbit in, by linearity, a superposition 
of these two motions: it will be dominated by the “fast” direction until it approaches the 
vicinity of the “Ilow” invariant manifold. The two one-dimensional invariant rnbmanifolda 
thu fomn 8 l epuatrix, partitioning phase space into the two regions seen in Figure 1. The 
orbits in one region overshoot the origin and must reverse themselves, while those in the 
other move monotonically toward the origin. 

If we oow XC&KG the wtml put.ttttttr I’, 8 bifurcation OCCII~ when r = [zwl . At 
thir critical point A hu only one eigcnvaloe and one eigenvector. The middle region of 
monotonic Thor tow&Id the origin haa vanished; all orbits, except the origin itself, overshoot. 
Under these conditions A cannot he diagonal&cd by a similarity transformation: at bat, it 
is brought to its Jordan canonical form via the transformation, 

V-'AV = 
-r/2 i 

0 > -r/2 . 

If we, continue to decrease P below 2w, the eigcnvalues and cigenvectors of A will be 
complex, and orbits spiral in towarda the origin. The spirals get tighter as r + 0 until 
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Figure 1: Phase apace of a damped harmonic oscillator. (e) Overdamped, (b) cdtically 
damped, (c) underdamped. 
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Figure 2: Trajectory of eigenvaloes of the damped harmonic oscillator bs r decreases from 
+DD to -CCL Two bifurcations occur: (a) vanishing of the ~epamtrir at r = ilZw[ , and 
(b) a Hopi-like bifurcation, but without limit cycle, at r = 0. 

1 
Figure 2: Trajectory of eigenvaloes of the damped harmonic oscillator bs r decreases 
+DD to -CCL Two bifurcations occur: (a) vanishing of the ~epamtrir at r = ilZw[ 
(b) a Hopi-like bifurcation, but without limit cycle, at r = 0. 

from 
,=d 

finally at r = 0 all of phase space splits into a collection of invariant circles, the flow of 
the undamped harmonic oscilla .x. In principle we could continue this process and consider 
r < 0 ; Figure 2 illustratcc the full set of all possible l igenvaluer. Orbits would then 
flow away from the origin rather than toward it. (From Eq.(2) we see that the complete 
symmetry is: r - -r , f - 4 ) p- -p .) 

h’otice that this qualitative mdysis of the flow, in which we have learned how all 
the orbits are arranged in phase space and how this organizational structure varies with 
changes in the control parameters, bar taken place withoui acidly wiving the equotioru of 
m&ion. The objective of this sort of analysis is to seek out special invariant submanifolds 
which partition phase space and thereby organize the flow of orbits. From them we gel a 
qualitative and semi-quantitative understanding of the dynamics 08 o whole, the kind of 
information besl suited for studying stability or developing statistics on m ensemble. 

Of course, in this care obtaining exact, analytic solutions is easy. Since the matrix A 
does not depend on 1, the integration of Eq.(2) is immediate, 

z(i) = l tA z(O) , (3) 
and we can identify the time-evolution map with the exponential: & M erA. 

For the undamped ease, r = 0, it is ensy to confirm that 

( > 

* 
‘A z-1, 
Y 

so that we can write explicitly, 

.fA = &(A/4 = 1. cmui + (4) 



Substituting Eq.(4) into Eq.(3) and writing out the components yields the usual freshman 
physics result: 

P(O) z(t) = E(0) corwt + z nnwt 

p(t) = p(0) coswt - mw z(0) sin& 

(5) 

Comment 2: The bifurcation which takes place ns the eigenvsluer of A eras the imagi- 
nary axis and the origin changes from being an attractor to being a repehr is a variant of 
the Hopf bifurcation. In this particular case it doer nothing interesting; linearity makes 
the entire phase space change simultaneously. In the presence of nonlinearities, as with the 
Van der Pal oscillator, it cm lead to the creation of a limit cycle. For an easily readable 
discussion of this, set Gilmorc.[.S] 

Comment 3: Eq.(4) is easily generalized. By the Cayley-Hamilton theorem, any 
square matrix satisfies its own characteristic equation. It follons immediately that for a 
n x n square matrix, A, expiA is a (n - I)-th degree polynomial in A. In particular, for 
any 2 x 2 matrix, A we can write 

efA = F(t) 1 + C(i) A , 

where F and G obey the following composition rules. 

F(1 + t’) = F(t)P(i’) - IAl G(t)G@‘) 

G(t + 1’) = G(t)F(t’) + F(t)G(t’) + ll[A]G(f)G(f’) 

comment 4: The reader who considers linear systems too easy for serious study might 
like to consider the following statement. 

“Suppose all the eigenvalues .of the linear equation 2 = AZ , k E R” , 
A : R” - R” , are purely imaginary. Then under what conditions are two such 
equations topologically equivalent? The ~nwer to this question is not known, 
and evidently the problem cannot be solved by presently available mathematical 
methods.” [2] 

Wonderful! One can establish a life’s work and a rewarding career merely by studying har- 
monic oscillators, a strategy not entirely unknown to some scientists. 

1.2.2 Hamiltonian dynamics. 

In addition to linearity, the (undamped) harmonic oscillator possesses a second important 
property: it is a Hamiltonian system. That is, its vector field can be derived from a real- 
valued function, X, via Hamilton’s equations. In particular, the Hamiltonian for a collection 
of independent harmonic oscillators and the components of the corresponding vector field 
can be written in the familiar form, 

H = 1 p:i2mr + ;mw:z: 
k ( > 

(6) 
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8R 
ii = - = p+l,, 

8Pk 
BH 

$h = -= = -m,u:z, 

Hamilton’s equations can be written more economically by using the ZN-tuple of chart 
coordinates directly, as displayed below in block form. 

r 1 
( > (7) P 

= J.8lflBZ 

::, ) 
0 1 - 

-1 0 

Non, let f be any observable, that ir, any real-valued function defined over phase space, 
f : M + R. The “time”-derivative off as observed by a system on an orbit of B is called 
a Lie-derivative and is evaluated using the usual chain rule. 

j = g.i+g 

=& _ ".J.g+g 
E [f,Hl+g 

The object [f, H] is, of course, the Poisson bracket, sometimes called the Lie bracket, 
off with H. By interpreting H as any observable, this definition is generalized to form a 
binary operation on the space of observables whose fundamental properties are: 

bihearity: [f,g+hj=[f,gj+jf,h] and [f+g,h:=[f,h]+[g,h]; 

antisymmetry: [f,gj = -[g,f]; 

Jacobiidentity: [f,[g,h]]+[g,[h,f]]+[h,[f,g]]=O. 

Another fruitful construction is the adjoint operator algebra. With each observable 
f we associate (L unary operator i which acts on the space of observables as follows: 

i:s-[f,sl 

Because of the bilinear property, i is a linear operator 

comment 5: Any binary operator that is bilinear, antisymmetric, and obeys a Jacobi 
identity belongs, by definition, to a Lie algebra. Exponentistion, as in Eq.(g) below, 
leads to a Lie group. It is in this way that Lie groups and Lie algebras were brought into 
the world. Because they arc usually presented to students in connection with quantum the- 
ories - angular momentum, SU(3), and so forth - their initial connection with dynamical 
systems, and especially with Hamiltonian dynamics, tends to be forgotten. The appropriaie 
place to introduce Lie groups ir in a CDWE on classical mechanicr. 

comment 6: It is an easy exercise to show that, because of the Jacobi identity, the 
commutator algebra of the adjoint operators is B homomorphism of the original Lie algebra. 



In this way, any Lie algebra is homomorphic to a commutator algebra 

Comment 7: Dirac’s quantize&n procedure establishes a morphism between the adjoint 
algebra of (L classical dynamical system and the operator algebra of it6 quantum analog, 
i.e., between Poisson brackets and commutstorr.[7j What is frequently not mentioned in 
introductory quantum mechanics courses is that this procedure fails for any system more 
complicated thsn harmonic oscillators.’ Loosely speaking, this is the content of a theorem, 
due to Grocnaald and Van Hove, which should be much more widely known; e very read- 
able discussion ofit (albeit with some errors) can be found in Guillemin and Sternberg.[lO] 

If we now interpret the z., and pk themselves as o&ervabler rather than real numbers, 
then Hamilton’s equations of motion can he written, 

i = [&HI = -Bz 

The solution is formally straightforward when H does not depend explicitly on t, although 
the detailed evaluation may be formidable, or even impossible: 

z(t) = /L(O) (8) 

This provides us with the formal identification, & - em’*. 

Comment g: Meditate on the following specious argument, remaining ever on the alert for 
plausible sounding nonsense, and resolve its implied paradox. Since fi is a linear operator, 
for any two orbits z>(t) and 21(t) we have, 

&k,(1) + Z2@)) = i,(t) + i&) 

= fif](f) + ii&) 

= @z1(t)+z&)) . 

Therefore z1 + 3 is also an orbit (!!??): it obeys the same Hamilton’s equations of motion. 
We appear to have proved that 011 Hamiltonian systems are linear, a result of enormous 
benefit to humanity. \I’hy, in fact, is this not a proof? 

Example: Constant force field. Let us see how Eq.(8) might work in practice. 
Consider the Hamiltonian 

x = p’/2m + mgz 

describing a non-relativistic particle moving under the influence of a constant gravitational 
field. Let us construct an orbit using Eq.(g) 

kz = [H,z] = [p’/2m,a] 
= -Ph 

Ii’. = fi(-p/m) 

= [%7%-P/ml 
= -g 

‘More prrddy, it is impossible to extend it to ah~crvahlrs that WC cubic or higher m&r pdynmnids in 
= and p. 
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Pz = 0 
:. z(f) = e -:“z(o) = 

( 
l- rii + 5’14’ z(0) 

2 > 
= z(0) + (p(O)/m)l - + 

Example: Harmonic oscillator. For the harmonic oscillator, we have 

k. = [H,.] = [p*/2m,E] 
= -P/m 

if% = -tip/m = -[+‘z’,p/m] 

= --Y*z 

By iterating these two equations, we find 

(-Lq’“z = (-l)~(wt)%, 

(-,8)‘“+‘2 = (-l)“(wt)‘“+‘p/w 

We ce.” now write the full solution, starting from Eq.(8) 

z(L) = 

= 

= 

z(f) = 

4,(O) = *go $(-fri)” z(O) 
~&(-‘wn40) +g (?“: l)pw”+w) 

( &lYgq 40) + (fp~;~~~;;~) P&9/~ 

P(0) E(0) coswt + z srnuf 

comment 9: This result is in complete agreement with and appears formally identical 
to Eq.(5) However, the interpretation is very different. In Eq.(5) , the symbols z(O) and 
p(0) represent real numbers; in Eq.(9) they represent observables, real-valued functions 
over M. (The difference between these two points of view is analogous to the difference 
between the Schr6dinger and Heisenberg pictures in quantum mechanics.) The number z(0) 
contains no information about the number p(O), but the function e(O) does know that the 
functionp(0) is its canonical conjugate. This explains hoa we can start from e -‘8z(O) and 
end with a” answer which contains both z(0) and p(0). 

Equations of motion are the components of a vector field associated with a particular 
chart (coordinate system). Changing charts, say T : 2 H 2’ , alters these components, 
much as rotating the basis of a vector space alters the component representations of the 
vectors. A straightforward application of the chain rule of differentiation produces the new 
compone”ts. 

i’ = (B&‘/B&) i 

= (8’/&). J (8H/&) 
= [ (BL(/&) J (&‘/8#](8H/B;‘) 

E J’(z’) (W/8&‘) (10) 
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P&non brackets transform in a sin&r way. 

[f,ul = ~flb.J.W% 
= (Bf/Bg’) . [ (8g’/8g) . J . (&‘/&)= 1. (@g/8& 

= (8f/8g’) . J’(z’) . (&/&‘) (11) 

These transformation eqnationr attest to the fact that the bracket is a geometric inlariat, 
. scdar; this dl be discussed further in the next section. 

If T is designed so that JQ’) = J , that is, if the Jacobian matrix, M = &‘/8g , 
saisfies 

MJM==J , 021 

then the forma for evaluating both the equations of motion and the brackets rue the name 
cm both charts. In such l cue, T ir aIled a canonical transformation, md M is called 
a l ymplectie matrix. It in easy to show (do it!) that the set of alI mymplectic matricer is 
a group, the nympleetic group. 

EXAMPLE: Linear mappings on the configuration rpace. One of the aimpIe. 
non-trivial examples consists of a linear transformation which does not mix the z and p_ 
coordinates. This is written in block foxm with n x n matrices ml1 and rnr~. 

M= o 
( 

ml1 0 
ma2 w 

MJM= = 0 rnld 
-mssm:1 0 > 

Therefore, a necmsary and sufficient condition that this be a canonicd transformation is 
that m,,m& = 1 . In particular, if this is just * scaling transformation, ml1 = Xl , 
m,r = #l , then we require that X = 1/j1. 

EXAMPLE: Scaled harmonic omillator. A scaling transformation of thin type puts 
the harmonic oscillator Hamiltonian, E-q.(B), into degenerate form. Take 
(mn)ij = 6ijm and (ma,)ij = 6,/m, so that 

a = c (p:/ltm + +w:=:) 

= $ ;w ((P*lma + b/GGb)‘) 

= T +s (Pi’ + Q) 
EXAMPLE: Polar (action-angle) coordinates. An even more useful chart uses polar, 
or mtion-angle, coordimtea. 
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Figure 9: Angle coordinates on a torus 

2; = msin& 

P; = ficosb, (15) 
MIsti, uort = B(z;P;)/8(hh) (16) 

= ( P; rll211 
-2; p;m > 

It is now I trivial exercise to show that the symplectic condition Eq.(lZ) is indeed satisfied, 
so that the 4 and I variables obey Hamilton’s equations of motion. From Eq.(14) , the 
Hamiltonian, expressed in these polar coordinates, is written, 

H=&IhEg.L (17) 
6 

Because the transformation is canonical, the coordinates of the vector field - also referred 
to as the equations of motion - are expressed according to the usual procedure. 

r = -8X/8& = a, 

&=eH/el=r (18) 

Eq’s.(lB) are parametric equations describing motion on an N-dimensional torus imbed- 
ded in n ZN-dimensiona phase space. The “action” or “amplitude” variables, which UC 
constants of the motion, serve to label the forus, and the “angle” or ‘ph-e” variables locate 
position on the torus. (See Figure 3 ) Th IS angle chart is equivalent to slicing the torus 
along N independent directions and flattening it out to fit inlo CI unit square in Euclidean 
N-space. This is, of course, just the identification of a torus as topolog&lly equivalent to 
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RN/i??. That orbits must lie on tori can &o be seen from the IoUoning argument. The 
orbit of (L single harmonic oscillator is topologicr& equivalent to a circle. Thus, the orbit of 
N independent oscUaton lies on a rufaec that ia the crow product of N copies of a circle, 
. torus. 

EXAMPLE: Eigeneoordinates. If we r&u cm implicit assumption that coordinata 
arc red, then we can introduce a transformation, 

in terms of which the Hamiltonian in Eq.(14) 01 Eq.(17) ia written, 

H = &e;fo* . 
h 

The Jacobian matrix of this traraformation in 

MIuh ~~~~~ = 8(&)/8(U) = @ ( !i : ) 

from which we see immediately that J’ = MJMT = iJ Eq.(lO) then yields the equations 
of motion. 

6, = i8E/8ai = iwh~h , ii = -i8E/80, = -iWhai 

These me the “eigencoom3inates’” of the hmnonic oscillator problem; they could have been 
obtained by diagonaliring the matrix A which appears in Eq.(2) (after reroing r). Upon 
quantkation they become the familiar annihilation and creation operators. 

comment 1: One of the most fundamental properties of Hamiltonian flow is that it 
induces an sotomorphism of the bracket algebra. 

e-‘qf,c] = [e-‘*f,e-%7] (19) 

This means that the time-evolution map is canonical, and it ia intimately connected with 
the fact that the Lionville measure over phw space, 

dr=dslAdsrh...hdznAdplI\d~h...hdpN (20) 

ia a dynamical invariant. Because of this, flnding the interesting structure in II Hamiltonian 
dynamical system ia much more difficult than in a dissipative system, where one can start 
practically anywhere in phase mpace and end tip on attractors: Hamiltonian dynamical sys- 
tems do not have attracton because Liooville measnre must be cowwed. 

Comment 2: Physicists who leaned dassical mechaniu from the firat edition of Gold- 
stein[~] UC most familiar with canonical tranrformationa in connection with generating 
functions rather than directly from the 6ymplectic gmop. For example, the transformations 
in Eq.(lS) wise from a generating function, 

Sk,& =p’*M-r , 

while those of Eq.(lS) can be obtained Erom the generating function, 

(21) 

s(gf’,h) = -q +td* . 



It is a straightforward but tedious exercise to confirm directly that generating functions do 
indeed produce canonical transformations. 

13 Geometry. 

“Linearity” is one of the most fundamental properties one can attribute to a dynamical 
system. A typical formulation goes something like this: A dynamical system is “linear” 
means that if u(f) and v(t) are orbits of the system, then y(t) + e(l) is one 41”“. 
Eq.(Z) s~wes as the archetypal example of this. By long familiarity we are lulled mto 
thinking this definition a simple, straightforward matter, but it is not. To begin with, it 
depends critically on representation; otherwise, what is meant in general by “adding” two 
orbits together? Consider, for example, a vector field, x(5,1) , given by 

5.c = 
( 1 P 

( x=i= P 
( > i 

where i is obtained from 

l[i(l - 2’) + Q&l - 2i(1 - .2) + 9t*z(l - +*)I = 0 (22) 

This appears to be a complicated equation describing B system that is neither autonomous 
nor linear. However, the substitutions 

t c f’/S , z - a! & 
d-- 

change Eq.(22) to 
i+z=o 

The linearitv of this system aas disguised by a poor choice of (extended phase space) 
coordinates in which to represent it, that is, an inappropriate chart. Without knowledge 
of the transformation to the “correct” coordinates, box would one establish this property? 
Put another ray, ir there a coordinate-Frye uoy of characterizing linewily? 

One can ask the same question about the Hamiltonian property. To treat this well would 
require a course in the topology of differential manifolds, but the “flavor” of the arguments 
can be appreciated without going into details.[lS,l] To begin with, the way that analytic 
objects are made into geometric objects is to write their transformation laws under changes 
in chart coordinates and to recognize that these allow one to make statements - 01 write 
equations - which transform covariantly. For example, the inner product construction in 
an n-dimensional real vector space is defined, in the usual way, 

(.,fo=~ziYi=z4-g 
i 

If we confine ourselves to charts related by orthogonal transformations, then this defines a 
legitimate geometric object, an invariant of the group O(n). 

VM~0(n):g’=Mg & r’=Mg - ,‘.y’=g.MTM.y=g.y 

However, if we enlarge the allowed transformations and let M be arbitrary, M E GL(n) , 
then Eq.(23) no longer defines a geometric scalar it is not invariant under CL(n). To 
correct it we xnust introduce II new object, the metric tensor, g, with transformation laws 
appropriate to reestablish the invariance. 
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(E’>lJ = I’ ‘9”J’ 
= g.MTg’M.g 

= E’g’y 

= k,lj!,- 

This reestablishes the quadratic form (E, 3) as a geometric (scalar) object, a “tw-form,” 
at least under GZ(n). If it is symmetric<nd positive definite, so that g is a symmetric, 
positive definite matrix, then matrix theory tells us that the l igenvalues of g arc positive 
reals and that g is diagonalirablc. That being the case, there will be some chart on which 
the form of the inner product reverts back to being the dot product of Eq.(23) . That is, for 
some M E GL(n) we shall have MTgM = 1. This statement is a sort of “representation 
theorem”: any symmetric, positive definite twc-form (i.e., an inneT product) must look like 
an ordinary dot product on some allowed chart. 

The key issue, then, is the rule which governs the transformation of the components of 
a vector under a change of coordinates. s Put another say, how should the basis vectors of 
TMp change under a chart alteration? This can be answered in many ways, but the %at- 
ural” basis vectors attached to a point in a manifold will transform like the operator S/8&. 
Thus, T:g-t’ induces the a”stural” basis transformation 
T:{e; Ik=l...N}-{e;‘Ik=l...N), where, using Einstein’s summation conwn- 
tion, 

Fk ’ - 8/8z+ = (Bzj/8z”)8/8r’ c (8d/8z”)Z, (24) 

Despite this rather mysterious formulation the rule is heuristically pleasing; it is, in fact, 
nothing more than what we all learned as sophomores under another guise. That this is so 
is seen most easily by doing an 

Example: Egg carton transformation. Consider the transformation illustrated in 
Figure 4 

From the matrix. 

21 s z;+cosez; 

22 E sin024 

aLlsz’= ( ; ye” ) , 

and Eq.(24) we get the correspondence, 

CT, ’ = e; 

z* ’ = cosf3~~ +sinf?& 

Example: Spherical coordinates. A more familiar transformation arises in the change 
from Cartesian to spherical coordinates on any chart that does not include the origin. 
Reverting to the most common notation, we have 

E = rsi”8cos~ 

g = rsin@sinp 

t = rcose 

‘Thisstatemcntir rcnhisccnt ofthe “Erl.n$enpro~.mme”-ounrcd by F&r Kleinin 1872. According 
10 Klein, rhac distinpishcd one kind of pxncwy from l nachcr was the voup of <ranslomation~ onder 
which its propositions remained valid. This idea YII used to dassify geomrtricrl thcoruns until tbc advent 
of Riematiu gcomctr~. rbich evidently did not fit into the schtme. 
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(a) (b) 

Figure 4: I’iaturaI basis vectors transform like 8/8;. 

from which we get 

B(r,y, z) = ;;‘; rcosecosk’ ;:;;eB,;f; 

a(?, 0, rp) 
( 

rcosesinrp 
z/t -7sin8 0 

Combined with Eq.(24) , this yields the usual result. 

e, = ++ pj + A) = i 

z, = +(cosBcoaip;+cosBsin~~-sinBh) = rB 

ey = r(-sin8rin~o;+rinecosipj) = t$ 

Had we used (~,r8, TV) as the new coordinates, Z,s and & would have been dimensionless 
as well. 

Components of a vector transform contra>ariantly to the basis. 

v’= n$ = v”& ’ = v”(8zj/8z”)Zj 

$ = (8~~/8z”)v’~ , o* in matrix form, 

o= (8L/8&‘).U’ 

Comparing this to F&(10) we see that Hamilton’s equations do indeed transform as the 
components of a vector provided that J is identified as a tensor rather than a constant 
(scalar) matrix. Similarly, the Poisson bracket, as defined in Eq.(ll) , is a true geomet?ical 
scalar. We emphasise again: seen in this way, an ordinary differential equation is the 
component representation of a vector field, a geometric object, associated with a particular 
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chart. All the ways, and more, in which we wrote differential equations for the harmonic 
oscillator come about from describing one and the same vector field from different points of 
view. 

Having recognired that the objects which appear in Hamiltonian dynamics are actu- 
ally geometrical constructs, the programme for fully geometrieing the theory proceeds by 
simultaneously (a) turning this development on its head and (b) making the notation and 
language as obscure as possible. Rather than starting from Hamilton’s equations of mo- 
tion, we abstractly postulate the existence of (1) an even-dimensional manifold, with its 
associated tangent and cotangent bundles, (2) a “symplectic structure,” which is a closed, 
anti-symmetric, non-degenerate two-form (quadratic form) acting on tangent vectors, and 
(3) a Row’ which is a symmetry of the symplectic structure. The symplectic structure 
eventually becomes identified with Poisson brackets, and the flow is, by definition, locally 
Hamiltonian. A deep theorem, due to Darboux, then brings us full circle by assuring us that 
with these geometrical structures in place, there must exist some chart in which the compc+ 
nents of the flow’s vector field can be obtained from a single function, the HamiItonien, E, 
according to the usual prescription; that is, there is a set ofcoordinates for which Hamilton’s 
equations take their usual form. This “representation theorem” is similar, both in statement 
and proof, to the one we formulated earlie on the inner product. Readers who wish to pup- 
sue these ideas in detail may enjoy reading the third chapter of Abraham and Marsden.[l] 

Comment 12: There are trivial examples of symplectic structure. Consider the com- 
plex plane, C 2 R', es A vector space over the reals. On it we define the two-form 
y(a,b) E Im[ab’] Because 7 is bilinear, nondegenerate, and anti-symmetric (verify!) it 
qualifies as the tw?form of a symplectic manifold, (C,y) , with symmetry group O(2) 2 
SC’(l), T, : 2 I-. e’*r 

Comment 13: ,’ masingly, it is possible for a dynamical system to be locally Hamiltonian 
everywhere but not globally Hamiltonian. We cannot describe here what this means, much 
less why it is so; once again I refer you to Abraham and hiarsdenjl] for details. 

1.4 The geometry of resonance. 

The nature of the orbits on an invariant torus specified by Eq’s.(lg) is critically important 
and depends on how close the u_ of the torus is to a resonance, the analytical definition of 
which is given by the equation 

m.w_+n=o (25) 
where I( is some integer and m = (ml, VT+,. .m~) is a multiplet of integers. In most of the 
textbooks, this is written with n set to sero, m ‘w_ = 0. This latter form is relevant to either 
autonomous or, equivalently, “averaged” Hamiltonians; the one that we adopt, Eq.(25) , 
appears in the analysis of Hamiltonians which aye periodic in “time.” It appears in accel- 
erator theory while studying Hamiltonians which describe transverse motion of a partide 
in a periodic structure, such as a synchrotron: after the usual Floquet transformation, the 
linearised dynamics becomes equivalent to a harmonic oscillator, but the pexiodicity of the 
environment survives in the transformed nonlinear terms. Here the independent variable is 
not “time,” 1, but an arimuthal angle, 6, whose natural period is 2~. All the discussicns 
in this paper are carried out with this application lurking in the background. We therefore 
implicitly assume 2r periodicity. The components of c are the winding numbers of orbits, 
on the torus; put another way, they are the number of oscillations (i.e., the tune) undergone 
by the corresponding angle coordinate while increasing t (or 6’) by 2n. 

‘The OIIC-~.,Mc~c, ,.dly dm.ppings obeying the Ch.pmm-Kolmogorov .qu.tion. 
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b 

4 

Figure 5: Regularly sampled pointr on a resonant orbit lie on an N - l-dimensional sub- 
manifold of the N-dimensional torus: (a) an u1 + 3~2 reronance. (b) -ul + Y) + 4~3, a 
six-dimensional phase space reronanct. 

In order to visualize the implications of this condition in phase space it is better to 
sample the orbit al the regular intervals tk = Znk than to follow it continuously as it winds 
its way around the torus. 

a I*=zr)r = 6 li=o +2nkg 

& (6 ltrm -4 I,=o) = ku = lkw-J 

Here, [z] represents the fractional part of r, and for any N-tuplc, a, 

M = (1~1J~la2J,...lwvJ) 
= gmodUN, 

(26) 

where UN E @(O, 1) is the N-dimensional unit cube. 
If the y of an invariant torus obeys a resonance condition, as in Eq.(25), then from 

Eq.(26) we get, 

; (II .a It=sr~ -m. 4 It=o) z [km. g J = [-in] = 0 . 

This means that the sampled points of the orbit all lie on an N - l-dimensional rub-torus 
parametrized by an equation of the form, E. 4 = constant, as illustrated in Figure 5 . Ifg 
satisfies two inequivalent resonance conditions, then they are contained within the intersec- 
tion cl two N - I-dimensional sub-tori, the connected parts of which arc N - 2-dimensional 
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sub-tori. In general, if k independent resonance conditions are satisfied, orbit samples lie 
on a family of N - k-dimensional tori; if k = N , the orbit is periodic. 

Comment 14: There is no substitute for sitting down with a pencil and paper and 
sketching 8 handful of these resonant orbits in (61/2n,62/2u) space. What happens, for 
example, when ml, ma, and n are not ceprime? 

On the other hand, if w obeys DO resonance condition, then the sampled points will 
fill the N-dimensional in&ant torus: the closure of this set is, in fact, the torus. If you 
watched this set develop for an g that was “close to” but not exactly %n* resonlmce, then 
you would see a speckled band form in the vicinity of the resonance line and slowly expand 
until it filled the torus. For a small number of samples, the influence of the nearby resonance 
would be evident, but it would eventually wash out M the number increased without bound. 
That is a consequence of the following fundamental theorem, whose proof originates with 
Weyl[26]: 

Zeroth ergodic theorem. If u_ is non-resonant, then the set of points 

.S={lkuJ IkEZ} 

is “uniformly distributed” over D”‘. 

Comment 15: Interestingly, if no resonance condition is satisfied, then the orbits are 
said to be “quasi-periodic,” a definition which seems completely backwards: assuredly, the 
resonant orbits are the ones which should be given this appelation, but history and mathe- 
maticians have deemed it otherwise. 

To understand and interpret this theorem, we must first describe a lit,le mow carefully 
what is meant by a “uniform distribution” of points in phase space. This requires that we 
first specify a measure over phase span, relative to which densities can be gauged. Fortu- 
nately, Hamiltonian systems come equipped with a natural, dynamically invariant measure, 
the Liouville measure of Eq.(20) Since the transformation to the action-angle coordinates 
of Eq.(15) is canonical, and since canonical transformations preserve the Liouville measure5, 
on a torus we must have 

Q Itorus= db, h d62 A.. A d6N 

which, apart from (2~)~ normalization, is the usual Lebesquc measure on UN. This is 
fortunate: it means that a set ofpoints on an invariant torus in phase space will be uniformly 
distributed relative to the Liouville measure if and only if the corresponding points on the 
angle chart, U”, arc uniformly distributed relative to ordinary Lebesquc measure. To be 
definite, we shall e.ssume a normalization: p(UN) = 1, which means that we associate e. 
point in the unit cube, UN, with the coordinates 6/2a. 

Consider finite sections of the set S, 

S,s(lky-l In=l...Z}cS , 

and let B C UN be any p-measurable subset of V”. We denote the number of elements in 
a set W as card(W). Then the statement “S is uniformly distributed” means that 

for all B : ,li”, I-’ card(S, n B) = p(B) 

6I h.w not prov.d or cvcn dcmonstmcd this. b-1 you know it .he.dy. 
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Count;ng the number of elements in A set, W, can be turned into en analytic problem by 
introducing the characteristic functions of W. 

Kw (4) I 1 
0, z4w 
1, ZEW 

The exact condition defining uniform distribution is then written: 

fora.UB: )lnf&z(Lk&=p(B) 
I=1 

In words, the fraction of points falling within a subset is equal to its dse, 01 at lest 
proportional to it for non-compact phase spaces. 

Because of the importance of the theorem, we shall give the 

Skeleton of a proofz The characteristic function of any measurable subset of UN can be 
expanded in Fourier series. 

&(%) = c ~&~~rn.~ almost everywhere over UN 
m 

WC then evaluate 

Since w_ is non-resonant, by hypothesis, for all m # 0 we have, 

f 5 (pimo)k = ; e*=i[-&-ey 1 
&=1 I 1 

5 
1 2 
7 / +ip$ - 1 / 

1 
= 

i (sin nl~. Y_ 1 
- 0, asl-+m 

Therefore, the only term which survives is cp But 

co = 
/ 

dNdb(g) = 140 
UN 

So we get the desired result: 

~&KB(lk~)=@~ -QED- 
*=1 

We have here A purely geometric description of resonence based on the dimensionality of 
the closure of A set of orbit samples. Resonance corresponds to dimensional collapse, if you 
will: resonant orbits lie on lower dimensional tori, non-resonant orbits fill invariant N-tori. 
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comment1e: The reader who wishes to verify the details of this skeleton and flesh it 
out into a legitimate proof will find that more then enough theorems exist to help him do 
so. However, I suspect that A few of these require A strong application of the dreaded Axiom 
of Choice. It is en interesting point: Is this ergodic theorem still valid if we accept only the 
weakest form of the Axiom of Choice ? Weyl and Poincsti themselves had little patience 
with people who posed such questions. 

comment 17: There is A delightful application of this theorem to the ‘Yirst digits 
problem” of number theory. Let M and b be fixed integers with M not A m.tional power of 
b and b > 3. If the first digit of ML in base b is d, then 

3~20: dxV<#<(d+l)xbP 

Taking the logarithm yields the inequalities: 

which in turn means that 

1 k log, M - log, d J < logb( 1 + l/d) 

Provided M is not A rational power of b, the fraction of numbers ML, k = 1,2,. whose base 
b expansion begins with the digit d is therefore log,(l + I/d). h’otice that these numbers 
sum to 1, es they should. 

b-l 

owl+ l/d) = 1% 
kl 

= log,b 

= I 
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If onyone thin&r thoi he knowr romething, he ha not 
yet known es he ought to know. 

- st. Paul 
1 Corinthimu 8, 2 

The thing I om going lo try lo ezploin may be ahead 
of me. I may be thinking I have got tinen when I have not. I 
can only ask [ezperts] to watch very carefully, and fell me when 
I go wrong; and otherr to take what I ray with a groin of ralt 
- es romelhing o&red, because it may be a help, not becsure I 
em eerhin that I om right. 

- C. S. Lewis 
Mere Christianity 

2 SEPARATXUCES. 

In the previous lecture we tried to motivate the geometric approach to the theory of dynam- 
ical systems, in which ordinary differential equations describing A system are interpreted 
as components of A vector field. Qualitative analysis of systems proceeds by identifying 
invariant submanifolds of different dimensions. A good deal of attention was paid to the 
harmonic oscillator, with special emphasis on the idea that there exist dynamically invariant 
N-dimensional tori, TV, imbedded in the 2N-dimensional phase space. These tori foliate 
the phase space, by which it is meant that (A) they are disjoint from one another, and (b) 
their union is the entile phase apace. As such, they can act es the level sets of N coordi- 
nates, (action) which thereby serve to label en individual torus; N more coordinates (angle) 
are then needed to locate position on a torus. Finally, we identified resonance conditions 
for the winding numbers, u_, of orbits. By sampling en orbit with the period advance map, 
w can recognize geometrically whether these analytic conditions are satisfied: If w_ is off- 
resonance, then the samples fill a uniformly dense subset of I”; their closure is TN itself. 
If k resonance conditions are satisfied, then their closure is a sub-torus, ‘rN-* C 7”. In 
the limiting case, where N resonance conditions arc satisfied, the orbit is periodic. 

The natuml question to ask et this point is, What other Hamiltonian systems admit 
such useful foliations? 

2.1 Liouville-Arnold theorem. 

A simple example of one is A straightforward generalization of Eq’s.(lB) ; it also describes 
the world’s most benign nonlinear system, the shearing Hamiltonian. Assume that II is A 
function of L only, and is independent of the 6 coordinates. 

H=H(J)EV.&+H,(L) (27) 
j = -BRf 86 = 0 

0 = sxle~ E g(L) = g+ sa./e~ 

Msthemsticians call this system A “twist map”; accelerstot physicists refer to H. as the 
‘detuning” 01 “shear” terms; such a Hamiltonian is sometimes also said to be “in normal 
form.” Their only important effect is to produce amplitude dependent tunes: unlike the 
harmonic oscillator, in which all tori possessed the same c, noww_ depends explicitly on I. 
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Comment 111: The dmplest phy&al -plc of a Ihearing Hamiltonian is provided by the 
pendulum. Its period of o&llation ir amplitude dependent, despite Galileo and freshman 
physics. (Folloaing through on the eonseqrrences of that - and the consequencea of the 
consequences, and aa forth - can lead to. pIeslant life’s work in the theory of elliptic fnne- 
tio~, Riemam mrfkcn, md algebraic topology.) If the apocryphal story about Galileo’n 
obaervationa on a winging lamp in true, I mupect that the reason he believed it8 period was 
onvurying wu that his pulse rate increased u he became more excited by the discovery. 

The N coordinates, Z,, Z,, . . .Zn, viewed u observable+ have three important proper- 
ticl: 

(a) They ue dynamical indmts; dZ,/W = 0 , for alI h. Since time does not appear 
uplitly in the definition of I,, this is equivalent to maying that [Ii, iT] = 0, so that each 
L ‘kommntea” with H. 

(b) They ue in involntion, which means that they alI %xnmute”: W, j : [I‘, Zi] = 0. 

(c) They are independent. Formally, the dXercntial fornu { dZ*, h = 1. . . N ) are linearly 
independent everywhere. More intuitively, obscrvrblea are independent when their level 
nnkca ue nowhere tangent: they intersect tmnsvemely. 

It turna out that these three conditiona are all that t required to assnrc the exktence of & 
local twist map. Tti is incorporated into the 

LiouvllIe-Arnold theorem: Let G1, G,, . _. GN be N independent, invariant observablea 
in involution defined over a ZN dimensional phw ~psce, M. From dynamienl invsliance, 
orbits must lie on level mets, 

Each Mr is a smooth, irmuimt manifold. If Mr is compact and connected, then it ia dif- 
feomorpbie to 7JJ, an N-torus. Orbits on Mr are “conditionally periodic.” That in, it is 
poesiblc to introduce 9 chart of angle coordinates, & on the torus so that, for some N-tople 
of real numberr, +, 6 = + 

comment 18: A Hamiltonian over a ZN dimensional phase space posnensing N invruiant 
observablea in involution is called “integrable.” Thin ir the classical analog of the quantum 
mechanical concept of a krmplete” set of commuting observables. 

Two closed c-em on the tom are homotopic if there ia. wry of continaonsly deforming 
one into the othu without leaving the torus. Let {TI,T,, . . .TH) be a set of N mntndly 
non-homotopic closed curves in TX, and define the line i&p&, 

E.&s L=l,Z,..., N . 

Then it in difficult to Ihowe that: (a) if g = (3 E) w 2 = ($,P’) ia a canonical tramfor- 
mation, the line integrals evaluate to the lame numbers using &her set of coordinates, (b) 
if we change the curve yb to m&hex which is homotopic to it, then the value of Zb rem&s 

‘Hem h rhue the fd pms d ,hr top&,&., method, ..,d thcormu .Usdcd lo in the Rnt ~ctioa is 
.er, h&&L 
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the same,’ and (c) the transformation from (g,~) to (&,L) is itself canonical. These 
are, of course, the celebrated action coordinates; the corresponding angle coordinates are 
then fixed by the bracket conditions, [ 6, L] = 1. Action coordinates possess the additional 
property of being odiobotic inworiants. If WC adiabatically change the Hamiltonian, say 
HI - h’s, then orbits on a torus of X1 will slowly deform into orbits on a torus of Hz. 
Which one? The one with the same values of the action coordinates. 

This construction does not determine unique action-angle coordinates: there is more 
than one way to slice a torus so that it can be laid out flat onto the unit cube, UN, or 
to select a family of homotopically inequivalent curves. We shall see an application of this 
when we “straighten out” a resonance in a later subsection. 

2.2 Theorem of Kolmogorov, Arnold, and Moser. 

One of the most fundamental problems of classical mechanics is finding a coordinate chart 
in which a given Hamiltonian is at least locally representable by a twist map, as in Eq.(27) 
The Liouville-Arnold theorem tells us that such charts exist ifthere is a complete, commuting 
set of observables -i.e., N invariant observables in involution. But this is essentially never 
the case: almost all dynamical systems arc not integrable, a fact not ususlly given the 
attention it deserves in academic curricula. Nonetheless, if the system of interest is %~a?- 
integrable, ” most orbits will still exist on invariant tori and generally act as though they 
were governed by an integrable vector field. The proof of this remarkable statement was 
first accomplished by Kolmogorov, refined and publicized by Arnold, and further developed 
by Moser. It is thus known as the KAM theorem. 

Suppose that the (nonintegrable) Hamiltonisn H is obtained from a shearing Hamilto- 
nian Ho via the addition of a “small” perturbation. 

H(a’,r) = Ho(r) + cH,(C,L-) 

Here, c is an order parameter which gives the relative scale between the two terms, and 
6’ and r are artion-angle coordinates on a chart appropriate for the tori of Ho. Under 
ihat conditions 411 H possess invariant N-dimensional tori of its own in the vicinity of 
E % O? The KAM theorem, which partially c.nswers this question, is not easy to state, but 
the gist of it is this: when Ho is itself a nonlinear dynamical system (of II certain kind), 
most invariant tori of Ho whose winding numbers are sufficiently off resonance will survive 
small perturbations, they will be deformed into invariant tori of H. 

Let us try to be more precise. For this section only I am going to set n = 0 in 
Eq.(25) This is tantamount to saying that we exe dealing with autonomous Hamiltonian? 

a generalization of the KAhf theorem exists for the non-autonomous case, but we shall not 
look into it here.’ Let w_(r) = SHo(r)/Sr be the N-tuple of winding numbers associated 
with the invariant torus of Ho labelled by r, and suppose that Ho is “sufficiently” nonlinear 
so that 

either IBg/Br I# 0 o* 8y ; I#0 (28) 

The torus is said to be “oR-res.onance” if there exist real positive 7 and 7 such that for all 
N-tuples of integers, m, 

Im.u_(r) I L Tllmll-’ 1 (29) 

llmll = 2 I mr I . 
b=, 

TII ir thus identified rith l homolopic cqti*rlence class of CPIICS, i.e., an element of the bornok+ grow 
of the EON.. 

‘For ,hr p,,rc,y perronrl ,e.son ,,,a, I am no, WC cm,fort.b,c with it. The not.tion md st.tcment of 
rhr ~beorcm which I USC hcrc hwe been combined from Amdd[3] l d Thining[ll). 
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The numbers 7 and r) are not completely arbitrary: among other things, r) is constrained 
by the number of degrees of freedom end 7 depends on e. There ere numerous such details 
which WC shall not go into here. The key point is the meaning of “&resonance” conveyed 
by the inequality. The first assertion of the theorem is that as c 4 0 the phase space 
volume occupied by Ho tori whose c(L*) do nol obey such II condition becomes arbitrarily 
small; essentially all Ho tori will be off-resonance for small c. The second is thst those tori 
fox which Eq.(29) ti satisfied will be preserved, in the sense that 

(e) there exists en invariant torus of H and e local (6, I) chart such that 

h=g(r)~Q end I=& 

(b) the connection between the two charts is e near-identity transformstion: 

r = L+u(kL,c>WO) 

r = 6+u(b,L,c,W”) ? 

(c) B end v arc smooth functions of their varisbles, possibly excluding go, end are zero- 
average, periodic functions of6, end 

(d) u and p vanish as c approaches zero: lim.,o y,~ = 0 

This collection of assertions comprise II statement of the theorem; the invariant tori whose 
existence is thus assured ere called the KAM tori of H. The proof is partially constructive 
end includes e procedure for estimating the volume of phase space containing KAM tori.[3] 

Comment 20: From e heuristic standpoint, the theorem assures us that most inveri- 
ent tori of II twist map will not be destroyed by II perturbation provided that there exist 
sufficiently large nonlinearities to detune reronences; that is the reason for the condition in 
Eq.(26) But suppose that this co *ition is not satisfied, es is the cesc, for example, with 
the harmonic oscillator. 1s it possible fog e perturbation to be so destabilizing that it could 
tear apart all the tori even for arbitrarily small c? The anwer is yes: one example, originally 
studied by Contopolous end others, ten be found in Lichtcnberg and Liebcrman.[l4, p.1641 

comment 21: For eutonomous systems up to two degrees of freedom, the existence of 
KAM tori is enough to insure stability of orbits bounded by them end level surfaces of the 
Hamiltonian; for non-autonomous systems with two degrees of freedom (the so-celled 2f 
degree of freedom problems) or for phase spaces of larger dimensions, this is no longer the 
case. This is, ofcourse, the essence of “Arnold diffusion.” 

Comment 22: In many ways the KAM theorem possesses sociological similarities to 
G&l’s famous theorem in logic: (IL) Both are widely known end talked about, yet many 
people are rather vague on what the theorems actually state, end very few have actually 
read the proofs, much less validated them.@ (b) Each has been called, by different meth- 
emeticians, the most important theorem of the twentieth century. (c) Neither is useful 
for practical calculations: almost by definition, GGdel’s theorem provides no hint on how 
to recognize undecidable propositions, end the stable phsse space estimated by the KAM 
theorem is typically too conservative to be of v&e. 

‘1 qdogire that the prcscnt discu&m will not improw that situation and may even exacerbate it. 
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Comment 23: The KAM theorem ia tied up with the question of ergodicity in dassicd 
atsltical mechanica. Recall that the ergodic hypothesis wan required in order to equate 
time avenger with ensemble aremgen: it mu necessary that e. system sample all the phw 
space wailable to it within the con&tint of energy conservation. Ifit possessed dynamical 
invariants other than energy, however, this could not be the case. The question then is, 
Are non-integrable mystem ergodie? The KAM theorem rays no, not generally: even in the 
absence of a complete set of invarim t obsembla, mmmrcable regicm of phase ‘pace rill 
contain orbits comkd to N-dimendond tad, just u though the inmuiantr were still there. 

Comment 24: I am not certain of this, bat let me state it anyway: In generdiring the 
KAM thecmm to non-mtonomous system, the condition Eq.(2Q) should be replaced by, 

I bl4. (!+?a 1) I? 7lb 4lP . 

2.5 Resonance topology: higher dimensions. 

The KAM theorem gumantm that off-r-nut toti survive; tbir don not by itself mean 
that on-resonant onn do not. Nonetheless, that in generally the care: typically, on-resonant 
tori are replaced by separatrieen, and we ahall devote the rat of this lecture to a dixuuion 
of these objects. 

It in regrettable that the concept “raonanee” is generally introduced as a disease of 
perturbation theory. The usual scenario is this: An attempt ic made to conshuct a tmns- 
formation (canonical or not, it don not matter) which wiIl put a Hamiltonian into normd 
form, as in Eq.(ZT). This attempt cventdly flounders: some terms in the pertnxbstion 
series may become srbitrariIy large because of division by “small denominators,” of the 
form sin[w(m. y+ n)]. Tbi~ problem is awxiated with the existence of nearby ~csonanc~, 
and the connection is completed. The ovemll e&t L to ruggert that a remname har more 
to do with the ray things are calculated than with red, physical phenomena-the sort of 
(equally false?) feeling DI)C sometimes geta about renomw&ation in quantum field theory. 
Thin characteriration ignores what ahonld be the central geometric features of a xsonance: 
the dimensional collapse of the torus, which we have &eady men in the flnt lecture, and 
the Edrtence of a repomtria, the utility of which is its sbiity to organire phase space via 
partitioning, enabling the simultaneous classification of all orbits and their relationships. In 
keeping with our geometric point of view, let me emphasise that a scparatrix is L topolog- 
ical object: no contiiuour transformation, whether eonntructed perturbatively or inspired 
by God, can deform phase #pace so aa to make it disappear. Small denominston are not the 
real stumbling block but only iti manifertdion within the context of perturbation theory. 
The red problem in that we ue attempting romething fnndunentdly impossibk. 

Comment 26s Consider the following thought experiment, which forces one to think in 
a coodinate-free way. Suppose that you we given a one-to-one symplectic mapping, F, 
d&cd over some btu-dimensional phase .pacc and real&d in an unrpecijied ayricm of 
cmmfin&kr. (Think of F, for example, w n tracking pmgram that returns Ctnplu of real 
mumbus and madela the period map of a 2f degree of freedom Hamiltonian system.) You 
rue given the ability to calculate forward or backward iterates of F infinitely quickly, ao you 
can generate aa many aa yen rant without any problem; further, you have the capability 
for vinoaliring these samples in four dimensions. Given even these extraordinary tools, how 
would yoo teat the hypothesis, This system exhibits a first order WI + 2~3 autopole 
resonance”? What topologicdfeaturu must one #arch for in the “data” in order to 



confirm or deny such a statement? 

Fortunately, there do exist integrable dynamical systems possessing scparatdces: the 
“single resonance” models. These allow us to study “regular” (as opposed to “chaotic”) 
separatrices analytically and thereby to discover their main features. In the next few sections 
we shall define a methodology for doing this and illustrate it with a concrete example. The 
anlyticsl model to be employed is the Hemiltonim, 

a(gI)=r.L+B.(L)+a,(r)cos[m.6+~+~(I)l 1 (30) 

which describes a single, isolated resonance, the sort of model that might be filtered out of 
II low order perturbstive expansion. The phase &B(I) appears in lieu of including both sine 
and cosine terms in the Hamiltonian. lo 1 have changed the symbol for the “independent” 
variable from t (time) to 0 (angle) to conform more exactly with the way this Hamiltonian 
appears in appIicationr to periodic accelerators. 

Global analysis of instances of this model proceeds along the following lines. 

23.1 Transformations. 

The first step is to take advantage of the fact that angle coordinates appear only in 
the linear combination m. 6 This suggests employing a canonical transformation of the 
form Eq.(lS) or Eq.(21) to a new set of coordinates, @,L) 4 (q,L), which we shall 
call the “resonance projected” coordinates. To simplify the presentat&, we shall assume II 
four-dimensional phase space, but everything that we do here can be generalized easily to 
larger dimensional problems. The equations of transformation are written as follows: 

J= ’ MI 
m: + m: 

6= ’ Mq 
rn: + m: - 

where the matrix M is, 

ME m1 m2 
( m2 -ml > 

Redefining angle-action coordinates in this way amounts to choosing a new set of horn+ 
topically inequivalent closed curves, {yh}, one which conforms more closely to the way 
resonant orbits actually wind around their N-tori. Resonant orbits are thus straightened 
out on this chart. 

The representation of the Hamiltonian on the new chart is a function Q(z, J), 

Q(q,L) = m~vJ~+rnxvJz 

+Q.(L) + Q.(L) C~~[ ‘II •t d + 6(J) I 

v+ere @I = d(L), Q,,.(J) I X.,,(I), and m x z 5 m2y1 - mly. There are two impor- 
tant points to be noted here: 

(1) m is an ignorable coordinate, so JI is a constant of motion. Our method of visualizing 
the flow will be to slice phase space along the three-dimensional surfaces JI = constant. 
We then can consider .I2 either as B dynamical variable of the original Hamiltonian or as a 

‘% ~‘ro,pect, rhiir m.y not have been the be.1 r.? ol ,ping .bout thi,, but I must d,.r ‘be line on 
rcari‘ing cmerhere. 
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control parameter of the “projected Hamiltonian.” 

(2) TJI and VIZ are coordinates whose modular range is (IrnlI + Imll)2r. Since Q is of pc- 
riod 2~ in rll the flow consists of Inal/ + Im21 identical copies of a fundamental domain, 
th E l&W. 

A second transformation (q,L) - ({,s’) gets rid of the explicit dependence of the 
Hamiltonian on 0. One gencrat?ng function which accomplishes this is: 

J 4 
F(2,J’) = (n + nO)J; + thJ; + dJ:‘&J;‘, J;) . w 

This produces the following equations of transformation 

J = J’ 

t = rh +ne+m 

J 

4 _ 
E2 = *r+ dJ;‘M(J;‘, JI) (33) 

The final form of the Hamiltonian is given by 

K=J~A+~x~JI+K.(J)+K,(L)co~E~ (34) 

where A E mly + rnr~ + n. It is expected that A is a small quantity. Indeed, for this 
Hamiltonian to be at all interesting A must be small enough so that .l*A is comparable in 
magnitude to K,(J) and K,(L). 

The independent variable B no longer appears explicitly in Eq.(34), so X is a constant of 
motion. That X and J2 form a pair of dynamical invariants means, by the Liouville-Arnold 
theorem, that this four-dimensional (now autonomous) system is integrable. 

Comment 26: These developments can be generalized trivially to more degrees of frce- 
dam. A single resonance Hamiltonian, of the form in Eq.(30) , depends on a single linear 
combination of phases. There are therefore N - 1 linearly independent combinations which 
are ignorable and whose conjugate variables are therefore constants of the motion. After the 
second transformation, which makes the Hamiltonian autonomous, the Hamiltonian itself 
becomes the Nth dynamical invariant. The system is thus integrable, all compact orbits lie 
on invariant tori, and, perhaps most importantly, there arc only two coordinater which are 
not invariant: J1 and F1 Therefore, regardless of the number of dimensions, the single resc- 
nance problem collapses down to a tw+dimcnsional (or one degree of freedom) autonomous 
system. 

23.2 Behavior at infinity. 

The easiest thing to examine ir the behavior of the flow at infinity. Dividing through by 
K, gives us an equation for cos (1. 

K.(J) - +eos.f, = 
K-J,A-mxgJz 

K. (II Kv (Ll (35) 

Under normal circumstances K, - co as JI - 03. Thus, unbounded motion is only possible 
for finite, invariant K only along the asymptotic phases CT which satisfy 

cos (1” = - Jphw IK. CL)/% @)I (36) 



Whether the right hand side (rhs) of this expressim lies within [-1, l] is determined easily 
by examining the highest powers of Js; which appear in the polynomials defining X, and 
X,. Let these be respectively n, and n,. If n. > n, then rhs unbounded, which means 
that the flow must be confined; no orbit can go to infinity. If h > n, then rhr -+ 0, 
and unbounded flows are possible at phases (1” - * ix/Z. If RI = n, then the situation is 
far more interesting: values of the phase asymptotes will depend on the parameters of the 
problem, including the value of JI (and the other invariant J’s, in higher dimensions). 

2.5.5 Resonant orbits, regular and irregular. 

Resonant orbits of the original Hamiltonian, Eq.(SO) , correspond to,fixed points of the 
projected Hamiltonian, Eq.(34) They are obtained by setting JI and & to zero. 

j, = -8xp~~ 

= X.sin& (37) 
(1 = 8X/U 

= A+8~X,+8~X,cos~t (38) 

Setting j, & 0 giver us the possibility of two types of fixed points: (1) regular fixed points 
(regfp) are those for which sin& = 0, and (2) irregular fixed points (irreg fp) me those 
for which X, = 0. Let the coordinates of a fixed point be symbolized 85 (<IO’, J/O’). In the 
case of a regular fired point, cf”’ zz 0 or T so that cosE?l = ztl and the condition & = 0 
simplifies to 

A+8,X,i&X.=O 
+ (i”’ 5 0 
- p 2t* (39) 

This equation, which is generally a polynomial in Jr;, must then be solved for the values 
of J(O). 

in the case of irregular resonant orbits, we must first solve the equation X, = 0 for 
allowed values of Ji”) and then use Eq. (38) to get the corresponding values of @‘. Unlike 
the regular resonant orbits, the phase of an irregular resonant orbit is not. necessarily pinned 
to a particular value; this must be treated on a cast-by-case basis. 

Which resonant orbits are stable and which are unstable? The linearized equations of 
motion in the tangent space, TMp, near a regular fixed point are written by expansion 
to first order in d& and d.7,. 

j, = X.( 5;“‘) COB we’d& (46) 

& = [BfX,(J~“)+ 8fX,(Jjo1)cos~~1]dJ1 (41) 

Therefore, if X, (J!“‘) cm EF’ and S: X, (Ji”) + 8: X, (Ji”) cm [y’ have the same sign then 
the fired point is unstable; if they have opposite signs, the fixed point is stable. (See 
Fig. (6).) 

The set of all orbits which approach an unstable resonant orbit as 6 - +m is called 
its “stable” manifold; those which approach it as 6 - -co is its “unstable” manifold. The 
union of the unstable resonant orbits along with their stable and unstable manifolds is the 
reparatrir of Ihe system. 

2.4 A model: the Q + 2vz sextupole resonance. 

To illustrate aI of this, wve shall find the separatrix for the first order (1,2) sextupole 
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Figure 6: The nature of a regular fixed point depends on whether the coefficients of d& and 
d.71 have (a) the same sign or (h) opposite signs. 

resonance, that is, the y + 2~ resonance excited by sextupoles to first order in the 
sextupole strength. Visualizing a four-dimensional object like this is a little involved, but 
not impossible. One method is to take a sequence of three-dimensional slices, much M one 
might presenl a cube to a two-dimensional creatum by slicing it from bottom to top. Of 
course, we must take some cwc in arranging the slices; our tw~dimensional friend would 
form a distorted concept of a cube were it presented sliced along a diagonal We shall obtain 
a good representation of the foul-dimensional dynamics by drawing the separatrir within 
three-dimensional surfaces specified by the condition J2 = constant. 

Our single rtson(~nce model Hamiltonian is, 

If = VIII + v& + &‘I, cos(61 + 262 + n9 + 4) 

where the numbers g and q5 art function& oftht sextupole distribution. The transformation 
to the resonance plojectcd coordinates yield 

I = (II +211)/5 
JI = (211 - I*)/5 

E, = 61+26,+wY+t$ 

(, = 261 - 62 (42) 

On this chart the projected Hamiltonian is represented, 

K = J, A + &I- + gl;“Is eoc (1 , (43) 

where A E y + 2y + n and r E 2y - vr. It is expected that A is a small quantity. 
Indeed, for this Hamiltonian to be at all inloesting A must be small enough so that JIA 
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is comparable in magnitude to the resonant term. Invariant manifolds must run parallel to 
(2, since (2 does not appear in K. The Hamiltonian flow, projected along &, is given by the 
vector field 

i, = gI;~=I~ssi”~, 

.f, = A~+gI; 1,s 1 (2Z~+21,)cos<, (44) 

Resonant orbits of K e.rc projected into fixed points of Eqs(44). The regular ones are those 
for which sin& = 0 ; the irregular ones are those for which either II = 0 or Zz = 0. 

Symmetries of the projected flow will allow us to confine our attention to the panune- 
ter quadrant: A > 0, g > 0. Clearly, if we simultaneously change the sign of both these 
quantities, the flow simply changes direction. Changing the sign of g alone can be compcn- 
sated for by the transformation [, - .$ + x. Finally, changing the sign of A alone amounts 
to performing both previous transformations in succession. In fact there are no essential 
parameters in this problem: both A and g can be made to vanish by a simple sealing 
transformation. Let us define ICC A/g, and scale the amplitude variables by IC’. 

As2 5 JI,s/K’ il.2 5 GJ/~~ 

Then the level sets-which determine the topology of the flow-of the function 

(45) 

K s g2(K - J$)/A5 = j, + i:“ir cos& 

are identical to those of X. Further, X can act as a true Hamiltonian for the scaled variables 
provided we simultaneously rescale 9 - 043/g2. 

For reference purposes, we shall present the e.nswer first and then go through its devel- 
opment. The separatrix is sketched in Figure 7. Each frame shows its intersection with B 
single three- .imensional JI leaf projected along the (2 direction onto the (t~,Jl) plane. A 
fen points should be kept in mind while scanning these pictures. First, the (1 axis corre- 
sponds not to J, = 0 but to J, = -2J2 (11 = 0), w h en JI < 0, and to Jl = ;Jz (12 = 0), 
when J1 > 0. Second, the dynamical range of ci is Ba: we are viewing only one-third of the 
full projection; each picture is repeated twice. Third, remember that .s ‘fixed point” in the 
diagram is the projection of a resonant orbit, which is a l-torus, a closed curve corresponds 
to a 2-torus, and an open (unbounded) curve corresponds to a two-dimensional surface. 

The fired point equation, Eq. (39), w IC we use to find the resonant orbits is written: h’ h 

A/g i Z;“*(;Z~ + 211) = 0 (46) 

Clearly if A/g > 0 (A/g < 0) then the - (+) sign is indicated, which mee.ns that @’ z x 
(<t”’ zz 0). To be definite, let us assume in everything that follows that A > 0 and g > 0, 
and rely on the previously mentioned symmetries to extrapolate results to other regions. In 
any case we shall set K ~1 A/g 1. The fixed point equation (46) can be written 

;I* + z(I:” - f)’ = g 

which describes an ellipse in (&,a) space. WC want to express this in terms of the 
constant of motion J2. Substituting from Eq’s.(42) we get the following. 

31, - ICI;” - ;J, = 0 (47) 
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Figure 7: Flow diagrems for the projected Hemiltonian of the (1,2) tesonen~e. 
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Figure 6: neck of the projected resonant orbits (fixed points) 

with solution 

(46) 

This is sketched in Fig. (13). 
Applying the tangent space Eq. (41) to Eq. (44) p rovides us with the localized flow. 

j, = gzy) lisxp) cos ,$)4, (49) 

.& = g/41!“)-s” (6J,(‘) + 17J2) cos$‘dJ, (50) 

Therefore, unstable resonant orbits ere those for which 65,(O) + 17J2 > 0. This inequality 
must be satisfied within the region J2 > 0, end since the + branch is the only one to exist 
in this region, this is enough CO l steblish that the + branch is the unstable one end the - 
branch the stable one. As A double-check, we examine the region J2 < 0. First note that 

bJ!T + 1751 = f [ac’ + 3OJ, zk ~d-1 

so, as expected, since I? + 3OJz > 0 it eutomatically follows thst the + branch is unstable. 
Further, since dm < a we have immcdistely that 

(0 + SOJ, c q/m- 

which means that the - branch treces the path of A stable fixed point. 
Recall that the irregular resonant orbits are found by setting K, to Nero in Eq.(37). This 

provides the value of the amplitude variable it the resonant orbit, after which the phase 
value is obtained from Eq.(Sg) upon setting C, to lero. In our model, If, = 0 means that 
either I, or 12 must vanish. Consider first approaching the surface 1, = 0. Eq.(44) is then 
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dominated by the I;“’ term: 

& is indefinite et <, z 1x/2. This is the location of the irregular wonent orbit, whose 
phsse, in this cese, happens to be pinned. (See Figures (7&-d).) At sny other value of (1, 

.& =sg”~cw&].m 

This type behavior will obviously occur whenever K, contains A term whose the highest 
power of Zl is t, end similarly for II. 

Now consider the surface Z, = 0. In this case Eq.(44) simplifies to the following. 

& = A + 2gI;‘= cos (1 

The resonant orbit thus sits et 
1 111 co*<; = -p” 

end is not pinned, but varies with X1. Real solutions are possible only for II > e2/4. Notice 
AlSO that Ei 4 ix/2 a~ 11 + m. In Figure 8, the point (I, = n’/4, Zz = 0) corresponds 
to the intersection of the regfp track with the Z, axis. Whet happens is thst the unstable 
regular fixed point is pushed down into the surface 12 = 0 where it splits into two irregular 
fixed points. (See Figures 7). 

Note that i1 remains finite for Zz = 0, where&s t1 was infinite on I1 = 0. Nearby orbits 
approach the instability in more leisurely fashion. This is intuitively appealing: one would 
expect A normal sextupole monenee to destabilize en orbit with lero vertical cmittance 
more slowly then one of having zero horizontal emittance. 

The J, amplitudes et which the regular resonant orbits occur on A particular J2 surface 
are found by intersecting the fixed point track of Figure(S) with the corresponding line, 
Js = constant. The merger that OCCUIS et J2 = -&K’ , JI = ~$,I? rtprescnts A local 
bifurcation” which, following Thom[25], is celled a “catastrophe.” As exhibited in Figures 
‘T&-c, the topological character of the flow changes when G crosses this threshold: below 
it, all orbits diverge; above it there is A “pocket” of stable orbits. Precisely et catastrophe, 
stable end unstable resonant orbits merge to form a cusp, which annihilates both of them. 
If one thinks of J2 a5 A control variable for the projected Hamiltonian-so that the control 
space is the set of doublets (J~,K)-then the subset { (Jz,rc)IJz = -~~/30), which marks 
the control points et which bifurcation occurs, is celled the “catastrophe surface.” 

Catastrophes ere local bifurcstions: it is possible to observe the transition by viewing 
the flow locally, in the vicinity of the cusp. In contrast, global bifurcations cannot be ob- 
served locelly: the separatrix es A whole undergoes A transition; locally, nothing interesting 
happens. One type of global bifurcstion, a saddle switch, can occur in our example when 
the Hamiltonian takes on the s&me value et the unstable regular end irregular resonant 
orbits, so that A branch of the separatrir can connect them. Assigning (I = r/2 end ZL = 0 
in Eq.(43) gives us the value of the reduced Hamiltonian at the irregular fixed point. 

Its value et a regular fixed point is 

K rrp,p=AJ~O)+~~~J~-g 

“It ir a bifurcation or the projected Hadtonisn; it ir I Iold in the sepratrix of the original, bur- 
dimcntional *ys*em. 
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Now, the algebra is made simpl :r by expressing everything in terms of II and Ja. 

to) 1s = 21?)-SJ, 

Jp) = I;“’ - 2J, 

Making these substitutions gives us the following. 

K,.,,p = A(Ii’)- 2J,) +m x rJ, - 2g1p)a” + 5gI~)“*J2 

(51) 

Now nse the tied point equation, Eq.(47) , to write 

5g@9’I’J2 = ,Q&-l’ _ 2/#) 

Making this substitution and simplifying a little gives us the result: 

a., j * = K., j p + 4d, (o)s/2 _ Alp) 

The necessary condition for a global bifurcation, K,.,j, = Ki,. j P, can thus be written a~ 
fo1lows. 

$pLg 

Substituting for Ii’) from Eq.(4g) g ives us the value of J2 where the bifurcation occurs. 

Jz = --$’ 

The “control space” surface {(J,, tc)iJz + $ d = 0) is called the “Maxwell surface” by 
Gilmore.[B] 

We have non finished our global analysis of the (1,Z) resonance model and ate ready to 
recapitulate the complete description of its flow (Refer to Figure 7): (a) For J2 large and 
negative all orbits are unbounded except the irregular resonant orbits, which are pinned 
to to the surface II = 0 at phases & z *r/2. (b) As Jz increases, a local bifurcation, 
or catastrophe, occurs on the leaf JI = -&I?. It is heralded by the appearance of a new 
branch of the separatrix connected non-transversally (forming a cusp) to B new resonant 
orbit, a I-lorus. (c) That orbit splits, and for -&t? < Ja < -&,K’ there is a single 
class of bounded orbits. (d) A global bifurcation, e. saddle-switch, occurs on the surface 
Jl = -AK’. At this precise value, the surface 11 = 0 is stable for phases that are 2x- 
equivalent to the mnge x/2 < & < 9x/2. On the surfaces -&,? < JI < 0 there arc two 
classes of bounded orbits. The first, say Class A, is as before and is characterized by a 
bounded phase, x/2 < & < 3x/2. The second, Class B, has an unboundedly increasing 
phase &. (Another way of saying this: Class A orbits exist in “islands.“) The entire surface 
I1 = 0 is now locally stable. (e) For 0 < Jz < AK’ the Class A orbits have disappeared; 
Class B orbits are still bounded. (f) When $a’ < J, Class B has disappeared as well. 
All orbits arc once more unbounded, except the two unpinned irregular resonant orbits in 
the plane 12 = tl which begin at (1 1 z at Jz = &K’ and (g) wander to (1 z ix/2 M 
Js+CO. 

2.4.1 Adiabatic resonance width. 
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Except for the irregular resonant orbits pinned on I, = 0 and 1, = 0, the (1,Z) ICI- 
onance possesses no bounded orbits on the leaves for which Ja < -&K’ or &,I? < J2, 
whereas between these leaves bounded orbits fill some volume of phase space. This is the 
general behavior of all resonances, except the quadrupole resonances fog which all orbits 
are either bounded or unbounded: the region of bounded orbits slowly shrinks as the reso- 
nance is approached. One quantitative measure of this approach to global instability is the 
“tesonance width.” We take this term to mean the size of the smallest strip in tune rpace 
which is centered on the resonance line, Eq.(25), and outside of which a beam is stable. 
This definition remains ambiguous, because it depends on the site and shape of the beam as 
well as on the experimental setup-e.g., on whether the resonance is approached adiabsti- 
ally or the beam is suddenly injected into the resonant situation. In order to avoid beam 
parameters entirely, we shall associate sn %diabatic resonance width” with each individual 
orbit. That is, we imagine initializing an orbit in phase space with control parameters set 
far from resonance, then approaching the resonance very slowly, and finally noting when the 
orbit becomes unbounded. 

For the (1,2) resonance of our example this means beginning with K zz cc and letting 
6 -+ 0 on a time scale much greater than max(l/y, I/y). At n = OD all orbits ore harmonic 
oscillator orbits, the variables Ii, I>, J1 and JI are conserved separately, and we can label 
an orbit with any two of the four initial values, I?, I y, J;” sad J;“.” According to the 
usual adiabatic theorems the variation of an orbit as K approaches zero will be regulated 
by the adiabatic invariance of the action integrals. Because JI is a constant of motion for 
fixed 6, we can take J, = & $ J& itself as the first adiabatic invariant. To the second we 
attach the symbol A E $ Jld&, whose value is A’” = 6rJp. 

What happens to an orbit as I( slowly decreases depends critically on the sign of 51”. 
For Jp > 0 the diagrams of Figure 7e-g are the relevant ones, and we now must think of 
them as flow diagrams for the projected Hamiltonian (see Eq.(43)) rather than mapping 
diagrams of the function F. As I( decreases the separatrix pushes downward. Each orbit 
remains on its leaf, JI = J;“, it maintains its value of A, and it crosses the separatrir, thus 
becoming unbounded, when the area under the separatrir has decreased to A’“. 

For Jp < 0 the situation is much more interesting, as the separatrix contains tao 
branches. Figures (7a-e) axe now the relevant ones, but they must be traversed in re- 
verse order. As IC decreases from DD the upper branch pushes downward, &s before, but 
simultsneously II bubble, representing the lower branch of the separatrix, forms and be- 
gins to grow. As these two branches grow closer, approaching their merger at the saddle- 
switch (K* = -4OJ;“), orbits either are captured by the island or pass through the up 
per branch, depending on their values for A”‘. The total area under the saddle-switch is 
A, = -(15 + S3s/4)J;“. If A’” > A, th e orbit passes through the upper branch of the 
separatrir; if Ai’” < A,, then it is captured by and subsequently leaks through the lower 
branch. If the latter happens, A undergoes a discontinuous change upon passage through 
the separatrix, since only one of the three islands can capture the orbit. (Remember, the 
period 3 property refers to the phase space mapping, not the transformed flow.) As K con- 
tinues to decrease, the orbit will retain its new value for A as the island lifts and shrinks. 
Eventually--at some point before I? = -SOJp- the island becomes too small to contain 
the orbit. 

Figure 9 contains a “master curve,” drawn in the normalized (j:‘, jp) coordinates of 
Eq.(45) , which uses this scenario to assign resonance widths to individual orbits. The curve 

UILS computed by numerically integrating the area under the upper branch of the separatrix 
when -l/40 < j, < l/10 and within the island when -l/30 < j, < -l/40. It is osed in the 
following way. Suppose one starts an orbit at K r-z m with initial amplitude variables 1; 

“Because the system is linear for I = m YC can Icgitimatcly ~~sochte 1;” and 1;” with th. initial 
horironrll and rerticJ +mirtwces divided hg Zn.j19] 
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Figure 0: Resonance width master curve. 

and r;“. To find the value of x at which the orbit becomes unbounded, first calculate J: 
and Jp, using Eq.s(42), and take their ratio. The intersection of the ray jy/]y = Jj”/Ji 
with the “master curven is now read off; call that point (JY, J?‘). The value of PC at which 
the orbit becomes unbounded is 

.,m. 

For a given resonant coupling, the adiabatic resonance width of the orbit is then determined 
according to 2A = 2grr. 

A more dynamic picture is obtained by removing the I/PC’ normalization: the curve 
of Figure 9 would be no longer static but sweep through the (Ip,Ii”) space, converging 
on the origin as K approaches cero and making orbits unbounded as it passes their initial 
conditions. 

2.5 Resonance topology, revisited. 

We can generalize our observations on the isolated resonance of a four-dimensional, inte- 
grable, periodic system to larger dimensional phase spaces. The wonderful thing is that, 
regardless of the number of dimensions, the problem always collapses to M autonomous 
Hamiltonian acting on a “projected” two-dimensional phase space. What we are trying for 
here is a generic, geometric description of separatriccs of integrable Hamiltonian systems. 
The usefulness of such e. structure is that it partitions phase space into disconnected regions, 
of which it is the boundary, thereby organiring the flow. It is built up in pieces from invui- 
ant submanifolds of vations dimensions. Here is what we shod expect (the term “orbit’ 
should be interpreted as the set of discrete samples obtained by applying the period advance 
map to a periodic system): 

1. At the highest level of structure, there is n way of slicing 2N-dimension&l phase space 
along disjoint (N + l)-dimensional adiabatically invariant sub-manifolds. Analytically, 
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these would be labclled by the action variables, JI through JN. These slices me the 
“leaves” of a foliation. The invariance property means that every orbit is confined to 
a single lest: Jt through Jm are constants of the motion. 

2. At the next level of structure, bounded orbits lie on invariant N-tori (N-dimensional 
tori), 7N. (Liouville-Arnold theorem) Almost all of these orbits are non-resonant 
and will uniformly and densely iill their tori under repeated application of the period 
advance map. 

3. Orbits whose winding numbers obey k resonance conditions will be confined to N - k 
dimensional subtori, IN-‘. We are especially interested in the csse k = 1. 

4. Within each leaf, each resonant TN-’ that is unstable -or more exactly, whose orbits 
arc unstable - forms a cluster set for orbits lying on zer~mtasure, N-dimensional 
manifolds. They are the “alpha and omega limit sets” of these orbits, which generalizes 
the concept of “stable” and “unstsble” manifolds attached to fired points. We shall 
xisk abusing the terminology and call them by the same nmne. 

5. The “separatrir” is the union of all the stable and unstable manifolds along with the 
unstable (N - l)-tori (i.e., tori made up of unstable resonant orbits) to which they 
are attached. Since the section of a separatrix within each leaf is an N dimensional 
surface, and since the leaves themselves have codimension N - 1, the full separatrix is II 
e. (2N - I)-dimensional surface, which are enough dimensions to enable it to partition 
the 2X-dimensional phase space. 

One really needs to let these images simmer for awhile before they fall into place. The 
topological description of any particular resonance consists of listing the resonant tori, the 
TN-‘, and describing how the branches of the separatrir connect them together, much as 
we have done with the y + 213 sextupole resonance. Is Separable resonances - those 
whose se! -ratrices remain “far” from each other - in more complicated, non-integrable 
dynamical systems are then associated with the existence of similar structures, e.t least on 
the macroscopic scale. 

2.6 Resonance seeding. 

We are led to a conceptual picture of near-integrable Hamiltonian systems much like the one 
in Arnold’s famous sketch, shown in Figure 10 It refers either to the flow of an autonomous 
system OI to the period advance mapping ofa periodic system (or, perhaps, to the PoincarC 
map of an arbitrary system). As we move out from the “origin,” which is actually a fired 
point of the map (or flow) we pass through a series of layers of invariant tori shearing past 
each other. Even this is an over-simplification, however, because the tori coltesponding 
to resonant tunes (winding numbers) will, upon more detailed inspection, be seen to be 
not tori at all but very thin separatrices sheltering subharmonic tori within their islands. 
These can be complicated objects, but the complexity does not end there. The separatrix 
which we sketched in the last section was of an integrable resonance, one consequence of 
which was that the unstable manifold of one resonant orbit joined tangentially with the 
stable manifold of another, thereby assuring that the scparatrir was itself It smooth surface. 
However, the generic Hamiltonian is not integrable, and there is no reason to expect this 
phenomenon to occur: the generic behavior is that the unstable manifold of ohc resonant 
orbit intersects the stable manifold of its partner transversally, not tangentidly. Now, all 
points on the intersection belong both to a stable manifold and to an unstable one - that 
is, they get mapped back into these manifolds under the period advance mapping. It then 

ItFor .nothcr~ex.mple, see refcrencr [I$ 
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Figure 10: V. 1. Arnold’s conceptual dwxing of a Bamiltonian system. 

follows that these surfaces must intersect not only once but an infinite number of times. 
Further, the phase space volume bounded by the regions between successive intersections 
must be preserved. The result is that the scparatrix, rather than being the bare, smooth 
surface depicted in the last sect in, is clothed with a complicated layer of “chaotic” orbits, 
the exact meaning of which will be the subject of the next lecture. The siiuation is sketched 
in Figure 11 for a twc-dimensional phase space; please keep in mind that four-dimensions 
can be vastly more complex, and we live in a six-dimensional wmld. 

Close to the origin, however, all this complexity exists on very tiny scales; on a macro- 
scopic scale, all WC would see WC tori shearing past each other, much like an integrable sys- 
tern. As WC move away from the origin, resonances may become broader and their chaotic 
separatrices thicker. Eventually, the chaotic layers from different resonances may begin to 
overlap each other, resulting in macroscopic chaos. For any system with 21 degrees of 
freedom or more - say a non-autonomous Hamiltonian on 8 four-dimensional phase space, 
or an autonomous one in six dimensions - this can result in ‘Arnold diffusion” around 
KAM tori. In lower dimensional systems there typically will be an outer stability boundary, 
a “shoreline” of chaotic orbits which marks the edge of the connected region of phase space 
occupied by bounded orbits. Even beyond this, however, there may be isolated pockets, or 
“islands,” of stability. The full description is seldom simple. 

WC hwe mentioned that resonances appear in perturbs&n theory c.s “tmall denomina- 
tors” which arise while trying to convert the Hamiltonian into normal form perturbatively. 
Now, there are two things which are constructed in perturbation theory: (c.) a transioxma- 
tion which changes the phase space chart in which one represents the dynamics, and (b) 
the representation of the Hamiltonian on the new chart. Small denominators appear while 
building the transformation. They can be sidestepped by relaxing the constraints on the 
new Hamiltonian representation. Rather than demanding that it be a shearing Bamiltonian, 
we can filter the most offending resonances out of the transformation and absorb them into 
the new Kamiltonian.[l9,1g,ZO] Ii there is only one of these, and typically the lowest order 
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Figure 11: Transverse intersection ofinvariant manifolds as a mechanism for chaos. 

one will be the most important, then the new Hamiltonian is still integrable; if there is more 
than one, it is not. 

In light of all the complexity inherent in an arbitrary system, what information can 
we really hope to glean from a perturbativc expansion in which one keeps only a handful 
of terms? A surprising answer emerges from numerical experiments on taodimensional 
maps.[21,11] It turns out that the outer “shoreline” of stability gtnerdly appears in the 
vicinity of the teparatrir associated with the lowest order resonances filtered out of a po- 
turbative expansion. This is, to my simple and rather naive mind, astonishing. There is no 
reason to expect the two to be connected, and yet the stability boundary appears to grow 
on this separatdx, much like a crystal of salt will grow on a string immerrcd in I saturated 
solution: it is, ii you will, “seeded” by the underlying low older resonance. 

This is illustrated in Figure 12 for the simple case of a nonlinear kick arising from 
a single, thin sextupole.” U’e confine our attention to horirontal motion only. The tw* 
dimensional phase space mapping is expressed as follows. 

(: ) = ( -‘z% F:Z) (p-k’ ) 

Here, A measurer the integrated strength oithc rextupolc. This mapping is called the HCnon 
map, named after the man generally credited with first studying its properties.” We can set 
A E 1 without loss of generality by resealing, = - e/A and p - p/X. This is in keeping 
with HCnon’r observation that any wea preserving quadratic map can be put into a one 

“1 .polo+ fo, the diflerence in ‘ire brtveen Ihe 1.0 hdrcs of Ihi. fi&nrr. Thn. k.I.ck spin‘t rhitc 
images were made from c&r didrs, md the studio penond mimmdentood their instructiona. It is 1c-a 
,.tc lo .tm”p* . ax. 

IsIf this were l just r&d, which it is not, this mapping would be nwned after one of the l cctler~lrn 
physidsts rho &udy had been mxkimg with it in comection with scxtupoles: pcrhmps the “b&t< map.” 
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(a) gb) 
Figure 12: Perturbation theory suggests that the outer stability limits of a Hamiltonian 
system are “seeded” by IOU, order resonances. (The tic marks on the axes are separated by 
0.5.) 

parameter iorm.[lZ~ Part (a) of Figure 12 short an orbit of the exact map for a tune value 
Y = 0.29. Its most dramatic feature is the very large 2/7 resonance which produces a system 
of seven islands. Seventh “order” resonances (Le., resonances with winding numba seven) 
should not appear until fifth order in the perturbation expansion, while the island chain is 
certainly more than a fifth order effect. In fact it is due to an interference between the l/S 
resonance, which appears at first order in the perturbation expansion, and the l/4 resonance, 
which appears at second order. This is confirmed in part (b) which shows the perturbation 
theoretic prediction when those two resonances we explicitly taken into account. The 2/7 
resonance, which WM not explicitly put into the Hamiltonian, nonetheless surfaces. Even 
more important, the stability shoreline appears in approximately the correct location and 
with approximately the correct shape. Figure IS shows a similar correspondence at a tune 
value of Y = 0.32. Here the dominant resonance is the third integer, and it once again seeds 
the shoreline. The rather chaotic collection of points comes from the exact mapping; the 
rather strange looking curve from second order perturbation theory with the (first order) 
third integer resonance filtered out of the transformation. The agreement is terrible fox 
large amplitudes - more terms are required - but the rhoreline surrounding the central 
stable region is again approximated extremely well, both in sire and rhapc. Similar tests 
at other vducr of the tune and with octupolcs (cubic kicks) indicate that this %ronance 
seeding” hypothesis can generally predict the shoreline of stability to within 6-15s. Of 
course, these examples we just for twwdimensionsl mappings; resonance seeding should be 
tested on four-dimensional maps as well. 

We should not be overly confident in our conceptual model, CIS in Figure 10 , of the 
behavior oia near-integrable system. It is, after all, limited by WI own visualization abilities, 
and it may break down when the system is far from integrable. Figure 14 , for example, 
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Figure 13: Resonance seeding in the HCnon map at Y = 0.32 

displays a three-dimensional projection of a *tangled” orbit arising in a model of the besm- 
beam interaction. Shorn are orbit sampler taken using the period sdvanct map. They 
certainly do not lie on a torus, but neither do they have the randomly scattered appearance 
we have come to expect from chaotic orbits. My belief, st the moment, is that it is indeed 
a chaotic orbit but one with a very low entropy - which brings us to the next topic. 
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Figure 14: Stereo views shoring a three-dimensional projection oia tangled orbit belonging 
to a beam-beam interaction model; the coordinates arc &, 61, and 11. 

The l srentiol character of Enlightenment thinking was 
Lo allow the clear light of reamn to ploy upon on objective 
and determinate world. Scarcely a fenlure of that dercrip- 
lion now ruruiver intact. . The world ti a good deal CY- 
riouser and more rhadowy tian the cighteenti and nineteenth 
centuries could hove conceived. That in ilrelf is no great cause 
for.. rejoicing. The ancient Hebrews knew well the dangers of 
tke waters of choor. 

- John Polkinghornc 
One World 

S CHAOS. 

Integrable systems are exceptional: in the metric space of vector fields they occupy a set 
of measure rero. Nonintegrable systems arc everywhere; they cannot be ignored - despite 
the fact that they hove been ignored by Physics departments in the United States until 
very recently. In particular, chaotic orbits can be created in the vicinity of an integrable 
scparatrir by arbitrarily small perturbations. The subject of chaos has achieved almost cult 

’ popularity, much like catastrophe theory in the 1970 6. ” WC shall not attempt to overview 
the subject in this section. Our goal is modest: we shall address the question, “What is 
chaos?” Exactly what objective, quantifiable property of dynamical systems is this word 
supposed to describe? 

“There is some danger in this, ad I am tempted to dclivu an amateur esne)r on the sodolofl of wirncc 
but sh..U re.i~t. 
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Answering this is not a trivial matter. The fundamental property oia classical dynamical 
system, after all, is its predictability. The past determines the future. The quintessential 
statement of this was expressed by Laplace who announced that given the initial positions 
and velocities of all the particles in the universe, he could calculate the future, thus giving 
rise to the phrase “Lsplacian determinism.” The advent of quantum mechanics pulled 
us out of this trap: Nature was suddenly seen to be nondctermistic, although this was 
more II matter of interpretation than of mathematical formalism. The theory predicted 
detcrmistic evolution of wave functions, but the interpretation of those wave functions led 
to a probabilistic model of events in space-time. Laplacian determinism had died, at least 
among mainstream phyricirta. 

However, it was not necessary to supercede classical mechanics in order to kill deter- 
minism. That oar understanding has changed dramatically since the time of Lsplace is 
exemplified by the following statement, in which Chirikov speculates on the deeper conse- 
quences of chaotic systems. 

“It is worth noting that such 4 motion has been searching for since long ago 
with the purpose of foundation of the statistical mechanics. . Could it be that 
in Nature there are no such ‘genuine’ random processes 8s we fancy them? In 
my opinion . .it is not excluded that no ‘more random’ processes than the 
motion of a K-system do really exist.” [S] 

Despite the labored English, his message is clear: classical mechanics has changed so drasti- 
cally that Chirikov suggests that classical chaos can account even for quantum phenomena. 
Whether one believes him or not - and I do not - it is important to look st classical 
dynamics in this new light. 

The discussion in this section iollows along the lines of several authors, but especially 
Billingsley[S], Sinai[23], and Arnold and Avez[4]. 

3.1 Phase space partitions. 

Period advance maps and P&car& maps exe instances of discrete dynamical systems (DDS), 
which formally consist of four pieces, 

DDS E (M,T,y,p) 

Here, M is the phase space, T : M - M is a mapping, 7 is a a-algebra of measurable 
subsets oiM, and p is a measure defined on 7. IiM has finite measure, then we normalize 
so that /J(M) = 1. For Hamiltonian systems, it is natural to assume that ~1 is the invariant 
Liouville measure, as in Eq.(ZO) 

Ergodic theory deals with the properties of discrete dynamical systems when T preserver 
the measure, as is the case with Hamiltonian systems. 

Vary: T-lo EY & r(a) =p(T-‘a) 

By writing the condition in this way, we do not require T to be invertible: T-l is defined 
on the power set of M, and the symbol T-la represents the subset of points which map 
into points in a under T. 

We now come to the heart of the matter: chaos and unpredictability can exist in dcter- 
ministic systems simply because it is impossible for us to measure quantities with infinite 
accuracy, and any observations which we make must be finitely expressible. Thus, the model 
appropriate for our observations of a classical system is not M but a partition of M. 

Def: Partition. “a is a measurable partition oiM” means: (I) ~1 is a set of measurable 
subsets oiM, a & y, (2) these subsets are disjoint: Va, a’ E P : either a = a’ or a fl a’ = 0, 
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and (3) the union of all the sets in the partition is phase space itself: M = &a a. 

Constructing a partition amounts to breaking phase space up into “cells,” each of which is 
a measurable, recordable “macrostate” of the system. 

Partitions naturally form a partially ordered set by reason of inclusion. 

cr>B means Va.~o 3bEB:oGb 

This is read, *the partition a is a refinement of the partition /3.” Thus, a 2 P if a is 
obtained by chopping the cells of p into smaller pieces. The most refined and the least 
refined ( or most coarse ) partitions arc: 

God’s partition : c f {{z) IzEM) 
the universe : U E {M} 

In a sense, it is unfair to include c as a possible partition, since it is nondenumerable, but 
it serves as an upper bound for all partitions. Clearly, any other partition a of A4 must 
satisfy c > a > U. Therefore, any two partitions possess both an upper bound and a lower 
bound, and it% not surprising that they will also have a least upper bound (lub) and II 
greatest lower bound (glb). The binary operations corresponding to finding the lub and glb 
impose an algebraic structure on the set of partitions, transforming it into what algebraists 
call a Ylattice,“” whose operations arc called “meet” and “join.” 

join: OVP s lub(a,P) 

= (aflb1aEa & bs/3} 

meet: UA~ I glb(rr,@) 

These operations are illustrated in Figure 15 

Comment 27: Unlike the join, there seems to be no binary operator, 0, acting on sets, 
such that 

ar\fi={aObIaEo & bc@}. 

Is this truly the case? 

Tracking the evolution of a DDS means observing the state of the system after each 
“time-step,” after each iteration of the mapping. Let z represent the initial state of the 
system. After k sampling intervals the state will be 7”~. Postulate an apparatus for 
observing the system whose mathematical model is .a partition, n. After each iteration we 
make an observation and record which cell in a the system occupies. The data from such 
a sequence of measurements can be encoded into a string of symbols, 00 01 a, a~.. a, 
which is interpreted: 

zE~ouadTzEalEoandT’.Eo*EQ 

. . amdT”aEa,,Eo 

where each a~ is in the partition a. This is equivalent to 

E E a,, E (I and E E T-‘al E T-lo and t E T-‘a? E T-‘a 

. and z E T-“a, E T-“a 

“Which is very difkrenl Lam chat physicists cdl l lattice. 

(52) 
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a mvcj=m ::, 
b ~,&+;;r d :.” + d ? aA? c 

Figure IS: The algebra of partitions. 

which, in its turn, is equivalent to 

I E f) T-‘a* E \j T-ko 
h=O .=o 

Our sequence of observations is therefore equivalent to making a ringle obsewsiion of the 
inifial rtate of the system using a partition that is more highly refined than the one provided 
by our apparatus, cr. (Of course, we are assuming classical mechanics throughout: our 
observations do not disturb the system in any way,) Provided that we design a intelligently, 
the larger the number of iterations the more refined is the super-partition, V;=oT-*o, 
and the greater the precision with which we know z. 

5.2 Information and entropy. 

The critical question is this: What is the expected (or average) information contained in 
such a sequence of observations? 

Before attacking this, we shall review quickly what is meant by the term “information.” 
The concept was introduced in 1948 by Shsnnon[ZZ], w h o used the idea that the information 
in a message should depend not on the message alone but also on the state of the receiver. 
Specifically, the information in e. message, m, should be a function of the II priori probability, 
Pnr, of receiving that particular message, an assertion which we shall write symbolically as, 

infor f f(R) . 

A severe constraint is placed on the function f by requiring that the information content 
of independent messages be additive. Let ml and ml be two independent messages with 
a priori probabilities p,,,. and p,,,I. Then the joint probability is pm,p,,,., and we have the 
following line of reasoning. 

infor(ml and mz) = infor + infor 
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* fbTP”.) = fbh,)+ f(Pm.1 
=a f(P) = -1WP 

The nega(ivc logarithm is used so that information is a positive quantity; if the logarithm 
is expressed in base 2, then Ihe unit of information is called a “bit.” This definition is 
intuitively reasonable: less probable messages hold more information than more probable 
messages, and in the limit p = 1 the information content goes to rem. 

The average, 01 expected, information in a set of possible messages, {ml, m,, ms, . .), 
is called the “entropy” of the set. 

q(m)) E - &Jwm 
m 

It is intuitively obvious, and easy to verify, that for a finite number of messages, 
N = cardi(m H({m)) is maximized by making each pm = l/N. 

If,.. = log N = logcard[{m)] (53) 

Comment 2s: It is natural to ask if there is any connection between this information 
theoretic notion of entropy and the one which appears in thermodynamics. In fact, Shannon 
leaned heavily on statistical mechanics in developing his ideas, and the two concepts are 
virtually identical. Recall from statistical mechanics that the change in lhermodynamic 
entropy, dS, of a system undergoing an infinitesimal isothermal expansion satisfies 

TdS = dQ= -(dE)+d(E) 

= -- 
g 

dE,,,c-PEm + d(E) 

= -&d (x.-BE-) +d(E) 

= d[kTlnI + (E)] 

where T now represents temperature, not a mapping, and 0 = I/kT. Integrate this equation 
with the boundary condition that S = 0 at T = 0. 

S = k[lnZ+P(E)] 

= k InZ-Cp,ln(Zp,) 
[ m 1 

= -kxp,lnp, 
m 

Apart from Boltzmann’s constant, which only normalizes the expression and can be absorbed 
into the base of the logarithm, this is the average information in an observation of the 
system’s slate. 

3.5 KS entropy. 
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A partition of phase space defines a set of messages: 

This message states that one observation wes made on the system and it was observed to be 
in the cell labelled “a.” To calculate its information, we must assign it an *priori probability. 
The “natural” one - and one that enjoys the property of being dynamically invariant - 
uses the phase space measure. 

Pm = 44 

If M has finite measure, then upon renormalization to p(M) = 1 pm becomes a legitimate 
probability; if M has infinite measure, then we must be content with pm M a relative 
pmbsbility. From this, the entropy (the information expected from e single observation) 
associated with the partition (or measuring device) a is 

H(o) = - c 44 h/4*) 
.EO 

What, then, is the expected information in the message stream: ao a1 a~. .a,? ( see 
Eq.(52) ) This composite message states that the state of the system, 8, is in a particular 
cell of the partition Vi=, T-‘o. The expected information in the message is therefore the 
entropy of this psrtition. 

a* *I a*. .a, - z E h T-‘ar E 
kc0 

(infor(aoa,...a,,)) = H(\jTeLo) 
h=O 

increasing the number of observations gives us more information abour the initial state - 
the partitions becomes more refined, and the initial state is determined to greater precision. 
The limiting rate et which information about the system increases with the number of 
observations is the crucial quantity. 

h(cx,T) E ;& kH(\j T-‘a) 
,=o 

This number depends on the initial partition, a, or equivalently, on the experimental appa- 
ratus. Nothing prevents us from choosing poorly. For example, choosing (I = U , results in 
zero information per observation, unless the system suddenly disappears. A better choice 
of apparatus will optimize h(a, T), thereby providing the maximum rate of increase of in- 
formation about the system, a qusntity WC shall symbolize as h(T). 

h(T) E sup h(a, T) 
e 

The supremum is taken over all possible measurable partitions. This limiting value is called 
the Kolmogorov-Sinai (KS) entropy of the sy~tern.‘~ 

We are finally ready to give an exact meaning to “chaos”: 

regular motion means h(T) = 0 

chaotic motion means h(T) > 0 

"More cxmly. of the mapping T. 
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If the system evolves “regularly,” then the information gain per observation approaches sero. 
Its future is predictable in the sense that as time goes by we could continue to increase the 
interval between observations without loss of information. This is the not the case when the 
motion is chaotic. There is 8 lower bound ou the retc of gaining information. Conversely, 
there is an upperbound on the interval between observations that can be tolerated without 
losing information. This has nothing to do with quantum mechanics; it would be true even 
if we violated the quantum uncertainty principle. It depends only on the fact that no matter 
how good the measuring apparatus is, it is still necessarily finite. 

S.4 Kolmogorov’s theorem. 

The definition of KS entropy is not computationally useful. We cannot search through 
all possible partitions to find the suprcmum. Fortunstely, most sensible partitions attain 
this limiting value and Kolmogorov’s theorem tells us how to recognize them. We first 
must define what is mesnt by e “genersting partition.” Loosely speaking, II partition, a, 
is “generating for T” if an infinite number of observations will determine c completely. 
Heuristically, this means that the siw of the cells in Viz0 T-*o cm be made arbitrarily 
small by taking n large enough. A more precise way of putting it is this: if 7 is the Q- 
algebra of sets over which p is defined, then V;=oT-ka - 7 as n + m. A partition 
which violates this is particularly poor in that it will have a limiting coarseness to it. The 
fundamental theorem which we need is then stated as follows. 

Kolmogorov’s theorem: If(e) a is generating for Tend (b) X(u) is finite, then 

h(T) = h(a, T). 

Comment 20: This result seems plausible. It is remarkable, nonetheless, that all 
generating partitions, some of which can be very crude indeed, attain the same limiting 
h(o, T). If P is generating, then the original dynamical system is equivalent to shifts on 
strings of message symbols. This is the approach of “symbolic dynamics.” 

EXAMPLE: Harmonic oscillator. We observe a harmonic oscillator at equally spaced 
times, say 0, T, 27,. end record whether its velocity is positive or negative. If time 
t = 0 is set to correspond to maximum negative displacement of the oscillator, then the 
nrh measurement records sgnsin(nwr), where Y = 2xj is the angular frequency of the 
oscillator. Let us take the state variable, c, to be the phase of the oscillator divided by 2x; 
its value, mod 1, lies in the interval L” = 10, 1) end the mapping corresponding to one 
sampling interval is 

T:zctz+fl mod1 

Finally, the partition describing our apparatus is simply 

(I = {mJ,N) 

aa = 10,w 

a1 = [l/2,1) (54) 

If z E 00 the oscillator has positive velocity, end if z E a1 its velocity is negative. Designing 
the experiment intelligently means that WC choose t so that jr is irrational. Then, by 
the “zeroth ergodic theorem” of the first lecture, (1 will be a generating partition, end its 
entropy should equal the KS entropy of the oscillator. 
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To evaluate this, note that each observation adds only two cells to vi=0 T-&a, from 
which it follows that 

card \j T-‘o I 1 =Z(n+l) 
I=0 

By Eq.(53), we then have the following inequalities. 

H( i T-‘o) 5 log[ 2(n+ l)] 
k0 

h(a, T) 5 &I ; logj 2(n + l)] 

= 0 

Since necessarily h(a, T) > 0, it follows that h(a, T) = 0. Finally, since (I is generating for 
T, Kolmogorov’s theorem tells us that h(T) = 0. 

Comment 30: To nobody’s surprise, the harmonic oscillator undergoes regular motion. 
The key reason was that the number of cells in the super-partition did not increase quickly 
enough. Indeed, we can make the general observation that since H 5 log N, N must grow 
at least exponentially fast to have h(T) # 0. 

EXAMPLE: Doubling. We consider an %bstrsct” dynamical system defined by assum- 
ing the same partition as before, Eq.(54), but now we take the map to be T : z - 22 mod 1. 
(This is an example ofan irreversible, measure preserving mapping.) Consider the first step 
in the evaluation of Vi=, T-*a. The partition T-la consists two sets, the first of which 
maps into ao under T, and the second into 01. 

T-l&[O,~)U$~) I r~,;iur~JH 

We now “join” this with a to get 

-‘a=W,;), l;>;,, $>;,> $1)) 

Going on to subsequent steps, at the nth stage the unit interval is divided into subintervals 
of size l/Z”+‘, giving us the following result. 

~~T-Lo={~[m,m+~)~m=0,1....2”+‘-1} 

This is obviously a generating partition for T, and we can proceed to evaluate the KS 
entropy. Since every cell in this super-partition is the same size, 

Va E 0 T-‘a : 
A=0 

44 = & 3 

this becomes an easy calculation. 

H(+ T-‘a) = -x+)log&) 
kc0 

= 10g[2n+‘] 
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= (n+ l)log2 

h(T)=h(a,T) = Llmm;(n+l)log2 

= log2 (1 bit) 

comment 31: What en eminently reasonable answer! It has e natural interpretation 
if we think of c es represented by its binary expansion. The mapping T then corresponds 
to shifting the symbols left one position, and the partition a means that one measurement 
corresponds to noting whether the first digit to the right of the decimal is e 1 or e 0. A 
sequence of measurements just reproduces the original binary expansion. The information 
in e measurement that is skipped cannot be recaptured by subsequent observations: it is 
gone forever. 

EXAMPLE: Linear automorphisms of e torus. Suppose that M is a two-dimensional 
torus, which we consider (LS topologically equivalent to U’ with identification of opposite 
edges. 

M 1 U’ = [O, 1) x [O, 1) 

Consider the mapping, 
T:zc.AzmodM 

where A is en integer, 2 x 2, unimodular matrix. Because of these conditions on A, the 
mapping represents e true one-to-one mapping of the torus onto itself. Calculating the en- 
tropy by means of a generating partition is more difficult then in the two previous examples; 
details can be found in Sinai.‘@ [23] The answer is 

h(T) = log X, 

where X+ is the eigenvalue of A satisfying A+ > 1. 

3.5 Lyapunov exponents. 

Although the KS entropy is e well defined mathematical concept, using generating partitions 
to calculate its value is intractable in all but the simplest models. In addition, it assumes 
that all orbits are of the same character, whereas in most real problems the dynamical 
system will possess both regular and chaotic orbits. A different approach is needed. 

Fortunately, one exists. Chaos is characterized by a phenomenon of divergence: two 
chaotic orbits that start out infinitesimally close to each other diverge exponentially rapidly. 
Consider, for example, the evolution of two infinitesimally close orbits, say with initial 
conditions z and z + e under the doubling map. After R iterates, 

Ty++c) = 2”(z+f) 

= 2”z+2’c 

= T”r +2”c . 

Thus, the distance between the two orbits grows exponentially. 

IT”(o+ c) - T’(z)1 = ernIeI, where I- = log2 

‘eUthough I rhjnk hi, prcolis flawed. 
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Consider also the behavior of two infinitesimally close orbits under the torus sutomor- 
phism. 

T(g+g) = Ag+ A< (mod M) 

IWz+d-T”(z)/ = IA”cI 
= r+lcl 
= Jnlcl, where r = log X, 

Of course, doing only two examples does not prove anything, but in each case inlinitcsi- 
mally close orbits diverge exponentially et e rate, r, which ir numericdly equal to h(T), the 
KS entropy of the map. This provides, then, en alternate, more computationally tractable 
method for calculating h(T). 

Making a giant leap forward, we now consider the divergence of infinitesimally close 
orbits under iteration of II generic map, T. 

T(z + f) = T(z) + c. a(s) 

TZ(g + <) = T(T(g) + g. a(g)) 

= T(Q)) + s. E(E) I) 

z T’(g) + 5. &(s) 

T”(z+r) = T”(d+T.DT”(r) 1 

where the c are computed recursively. 

g”(g) = g”-‘(z) ‘g(r-l(l)) 

If the orbits are diverging exponentially, then we can connect the rate to the norm of g. 

1T11(4+g)-Tn(g)I : IrIP 

= I ( I ll&gYz)II 

This suggests both a definition, 

rg L ;ii~- i In l/gyz)jl 
and en association, h(T) L r. 

This cannot be correct, however. In the first place r(g) depends on the initial conditions, 
g, while h(T) is II global number, and in the second, the norm of= does not carry enough 
information to characterize the motion. 

The correct answer is only a little more complicated.[l4] Let XI > XI > . . AN be the 
N eigenvalues of m”(g) arranged in decreasing order. The “Lyapunov exponents” of the 
map T evaluated zthe orbit passing through 4 are the numbers 

rk fE) z Jim- i In Ah(k) 
The fundamental result which then connects these quantities to the KS entropy is as follows. 

h(T)= J, d4t) C h(2) 
I..>0 
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This expresses the global quantity, KS entropy, as en average of a local function, the Lya- 
punov coefficients. It reflects the fact that regular and chaotic motion can exist simultane- 
ously but in different regions of phase space. 

S.6 Fractal dimensions. 

Nonrero entropy is not the only signature of chaotic orbits; for example, they are associated 
with broad bend Fourier spectra and fractal dimensions as well. The latter quantity in 
particular has captured people’s imagination, and we shall consider it briefly before closing. 

Consider the problem of operationally determining the dimension of II set of points, such 
as e surface of some kind, given a procedure which uniformly samples points in the set. One 
approach, first suggested by Hausdorff, is to cover the set - or the generated points - 
with spheres of e given radius. The minimum number of spheres (or cubes, or ellipsoids, or 
whatever) with radius < r needed to cover e set will grow like en inverse power of 7, for 
smeu 7. 

The exponent is the ‘Hausdorffdimension” of the set. 

d= -I&-$‘~ (55) 

The charactcriration of this number es II dimension is confirmed by the observation that 
when the set is (an open subset of) e manifold, its value is indeed the dimension of the 
manifold: the Hausdorff dimension of II curve is 1, of e surface 2, of e volume 3, and so 
forth. To see this most trivially, consider pecking II measurable subset of R3 with small 
spheres of radius 7. If the volume of the set is I’, 

I’ e N(r) x ;d , 

from which, 

so that the Hausdorff dimension is three. However, the procedure defining this number 
makes no assumption about the point set being sampled; it need not be a manifold, and its 
value need not be an integer. This can happen, for example, with samples of e chaotic orbit 
confined to e compact subset of phase space, for strange attractors in dissipative systems, 
or for basin boundaries of systems with more then one attractor. A set with non-integer 
HausdorfT dimension is a fractal, and its dimension is then celled e fractal dimension. 

Example: Cantor’s set. The patriarch of all fractals was devised by Cantor to demon- 
strate the existence of e set which had zero measure and the cardinality of the continuum. 
It is defined as follows. Begin with the sets, 

C, E U’=[O,l)cR 

s, E {U’} 

Notice that Co is en interval of the real axis, while So is II set whose element is Co. We 
now define e sequence of sets, SJ,, k = O,l, 2, _. , recursively by specifying the members of 
Sk,, in terms of those of Sk. This is described most easily with e pseudeprogram: 

5-0 I {VI); 
ior ( k= l...m ) { 
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Sk s0; 
ior every lz,y) E Sk-, : .s.& = Sk “{:z,;21 $y)}u{[$z+ ]y.y)}; 

1 

In words: Sk is obtained from the intervals in Sk-, by a process ofchopping out their middle 
thirds. Thus, in particular, 

s, = { %l) l 

5.1 = tIo,;),!;,l)} 

s, = { IO,! 
21 27 8 

J’ [G’iL [j’$)’ [C’l) 1 

and so forth. The kth approximant to Cantor’s set is the union of all intervals in SI, 

Finally, the Cantor set itself is the intersection of all its approximants. 

(This is a set-theoretic way of saying C = limb-- Ch. ) It is easy to see that the set has 
measure zero, p(C) = 0, since it is covered by each approximant, C*, and p(Ch) = (Z/3)*. 
Further, it has the cardinality of the continuum, since C comprises all those numbers in U’ 
whose expansion in base three contains only the digits 0 and 2. By changing each 2 to a 
1. and reinterpreting the string as a binary expansion, we can map Cantor’s set one-to-one 
onto U’. Finally, its Hausdorff dimension is noi an integer. To see this, note that each Sk 
contains 2’ intervals of radius (l/3)* and covers C. A moment’s reflection is sufficient to 
convince that it is the smallest such set. Therefore, the dimension of C can be evaluated, 
after taking the limit in Eq.(55), 

log[P] 
d = -k!% logf(l/3)*] - 

- log 2/ log 3 

Comment 32: Cantor’s set shares one more property with other fractals: it is self-similar. 
Multiplication by three maps the lower third of Cantor’s set onto the full set. 

t E C’ iff z E U’ and 

Comment 33: The term “fractal” was coined bv Benoit Mandelbrot, the man largely 
responsible for their reintroduction into the modern stream ofcollective consciousness.[l5,16] 
Following his lead, researchers have found fractals arising in a wide variety ofapplications. In 
retrospect, this is not surprising. We began these lectures by talking about manifolds as the 
stage on which dynamical systems perform. This id&e fix that the background environment 
is smooth pervades all of physics, from freshman mechanics to general relativity. 
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We inherited it from the Greeks, who were principally interested in studying such things as 
circles and triangles. The stage which they employed w&s the Euclidean plane, and we have 
basically projected their concept forward through thirty, or so, centuries. Lost somewhere 
in that process was a fundamental observation: circles and triangles do not exist in Nature; 
they were mental constructs very useful for solving a particular class of problems. Frac- 
tals, also mental constructs, are far more appropriate to describe large classes of natural 
and mathematical phenomena which cannot be handled by the Greek models. One need 
only stare at a tree to see how Nature mater use of fractal structures and to appreciate 
their beauty. It has been suggested that tractal figures drawn by computers are the modern 
equivalent of the Greeks’ circles and triangles, a first step beyond those smooth models 
which they created and we inherited; it is conceivable that fractals may eventually lead us 
to new geometries; it is possible that among these we may find one that serves us better in 
describing the way our world works. For now, however, this is little more than a popular 
speculation and likely to remain so for quite some time. 

Let me close these lecturer by offering two exercises which lead to fractals. 

(a) Fractal basin boundary. Using bitmap graphics, draw the set of starting points in 
the complex plane for which Newton’s method fails to find nth roots of unity. In particular, 
find all complex z for which the iterative scheme z - (2~~ + 1)/3rz fails to converge to 
one of the three cube roots of unity: 1 and e *zni/s. The roots of unity in this example are 
attractors of Newton’s map. The ret of all points in the complex plane which converge to 
one of them is called its “basin of attraction.” The points for which Newton’s method fail 
arc on the boundary between adjoining basins; hence the term “fractal basin boundary.” 

(b) Strange attractor. Let fi, fi, f, : U2 + U’, be three contractive mappings of the 
unit square into itself, defined as follows. 

fl : (E!Y) - (Z/2>YP) 

f2 :(%ar) - ((2 + 1)/L II/q 

fa : (5 Y) - (=/-A b + l)P) 

Construct a stochastic process on II1 by randomly choosing at each step from f~, fr, and 
fs. That is, z~,z~,z~,. will be a random sequence of points in U’, and for all h, 
Prob[a+l = fn(zr)l = l/3 > n = 1,2,3. Beginning anywhere in U’, plot an orbit of this 
process. The strange attractor which results has an obvious relation to Pascal’s triangle 
mod 2. What is its Hausdorff dimension? 
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